EXPERIMENTAL STUDIES ON ASEISMIC BEHAVIOR OF AUTOCLAVED AERATED CONCRETE MASONRY WALLS STRENGTHENED WITH HDC
-
摘要: 蒸压加气混凝土(AAC)砌块砌体墙自重轻,但其抗震性能较差,为提高该类墙体的抗震性能,提出采用高延性混凝土(HDC)面层和条带对其进行加固。设计制作了4个无筋砌体墙和2个构造柱约束墙体试件,其中2个试件采用HDC面层加固,2个试件采用HDC条带加固,通过拟静力试验,研究AAC砌体墙的破坏形态、滞回性能、承载力及变形能力等性能。试验结果表明:HDC面层可改变AAC墙体的破坏模式;对于无筋砌体墙,加固后试件的承载力、变形及耗能能力均得到了不同程度的提高,墙体裂缝数量明显减少,刚度退化较为平缓;对于构造柱约束墙体,单面HDC面层使加固试件的侧向刚度、水平承载力及耗能能力均大幅提高,且加固试件具有较高的残余承载力,墙体的开裂和损伤程度较小。基于试件的破坏形态,提出加固墙体的水平承载力计算方法,其计算结果与试验结果吻合较好,可为HDC加固AAC砌块墙体的承载力计算提供参考。
-
关键词:
- 蒸压加气混凝土砌体墙 /
- 高延性混凝土 /
- 抗震性能 /
- 抗震加固 /
- 承载力
Abstract: Autoclaved aerated concrete (AAC) block masonry wall has the characteristic of light weight but poor aseismic performance. High ductile concrete (HDC) layer and strip were used for improving the aseismic performance of AAC masonry load-bearing walls. Four unreinforced masonry walls and two confined walls were designed. Among these specimens, two specimens were strengthened with single-sided HDC layer and two specimens were strengthened with HDC strips. The effects on the failure patterns, the hysteretic performance, the lateral strength and the deformability of each specimen were studied by a quasi-static test. Test results show that the single-sided HDC layer can change the failure modes of AAC masonry walls. For unreinforced masonry walls, HDC can significantly reduce the cracks and improve the stiffness degradation, the lateral strength, the deformability and the energy consumption capacity of AAC masonry walls. For confined masonry walls, the lateral stiffness, the horizontal bearing capacity and the energy consumption capacity of the confined wall strengthened with single-sided HDC layers were greatly improved, with high residual bearing capacity and slight damage. Based on the failure mode of specimens, a method for calculating the horizontal bearing capacity of strengthened walls is proposed, and the calculated results are in a good agreement with the experimental results, which can provide a reference for the calculation of bearing capacity of AAC block walls strengthened by HDC. -
-
表 1 加固方式
Table 1 Retrofitting form of specimens
试件编号 加固方式 竖向荷载/kN AW-0 无构造柱未加固 138 AW-1 无构造柱单面面层加固 138 AW-2 无构造柱双面条带加固 138 AW-3 无构造柱双面配筋条带加固 138 AWG-0 带构造柱未加固 138 AWG-1 带构造柱单面面层加固 138 表 2 材料实测强度
Table 2 Measured strength of materials
试块类型 水泥砂浆 构造柱混凝土 抗压强度平均值/MPa 3.1 14.9 表 3 PVA纤维各项性能指标
Table 3 Performance indicators of PVA
长度/
mm直径/
μm抗拉强度/
MPa弹性模量/
GPa伸长率/
(%)密度/
(g·cm−3)12 35 1500 36 7 1.29 表 4 各试件特征点
Table 4 Characteristic points of specimens
试件编号 Pcr/kN Δcr/mm Py/kN Δy/mm Pt/kN Δu/mm μ θu AW-0 90 1.09 98.6 1.39 117.8 8.03 5.79 1/187 AW-1 100 0.93 126.2 1.72 154.2 13.96 8.12 1/108 AW-2 100 1.15 117.7 2.37 137.4 8.43 3.56 1/178 AW-3 110 0.94 130.5 1.46 151.1 14.01 9.63 1/107 AWG-0 70 0.6 97.0 1.33 114.5 14.00 10.49 1/108 AWG-1 110 0.61 176.7 2.19 207.1 10.05 4.59 1/149 注:表中荷载、位移均取试件推、拉两个加载方向的平均值;Pcr、Δcr、Py、Δy、Pt、Δu依次为试件的开裂荷载、开裂位移、屈服荷载、屈服位移、峰值荷载和极限位移;位移延性系数μ=Δu/Δy;极限位移角θu=Δu/H,H为墙体加载点高度。 表 5 试件的累积耗能
Table 5 Cumulated energy depletion of specimens
试件编号 累积耗能/(kN·mm) 屈服荷载 峰值荷载 破坏荷载 AW-0 875 1491 7061 AW-1 554 1261 28849 AW-2 1614 1870 10017 AW-3 806 1586 23826 AWG-0 429 1310 10465 AWG-1 1097 1765 14691 表 6 计算结果与试验结果比较
Table 6 Comparison of maximum loads
试件编号 Pt/kN Vt/kN Pt/Vt AW-0 117.8 105.6 1.12 AW-1 154.2 153.1 1.01 AW-2 137.4 123.3 1.11 AW-3 151.1 140.4 1.08 AWG-0 114.5 116.7 0.98 AWG-1 207.1 189.2 1.09 注:Pt、Vt分别为AAC砌体墙水平承载力试验值与计算值。 -
[1] GB18306−2015, 中国地震动参数区划图 [S]. 北京: 中国标准出版社, 2015. GB18306−2015, Seismic ground motion parameters zonation map of China [S]. Beijing: Standards Press of China, 2015. (in Chinese)
[2] CECS 289−2011, 蒸压加气混凝土砌块砌体结构技术规范 [S]. 北京: 中国计划出版社, 2011. CECS 289−2011, Technical code for masonry structure of autoclaved aerated concrete block [S]. Beijing: China Planning Press, 2011. (in Chinese)
[3] JGJ/T 17−2008, 蒸压加气混凝土建筑应用技术规程 [S]. 北京: 中国建筑工业出版社, 2008. JGJ/T 17−2008, Technical specification for application of autoclaved aerated concrete [S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)
[4] Aroni S, de Groot G J, Robinson M J, Svanholm G, Wittman F H. Autoclaved aerated concrete properties, testing and design, RILEM TC 78―MCA and 51―ALC [S]. London, New York: E&FN Spon, 1993.
[5] Alexandre A. Costa A A, Penna A, Magenes G. Seismic performance of autoclaved aerated concrete (AAC) masonry: from experimental testing of the in-plane capacity of walls to building response simulation [J]. Journal of Earthquake Engineering, 2011, 15(1): 1 − 31. doi: 10.1080/13632461003642413
[6] 吴会阁, 赵均, 凌沛春, 等. 设芯柱的蒸压加气混凝土砌体承重墙抗震性能试验[J]. 北京工业大学学报, 2013, 39(1): 51 − 56. Wu Huige, Zhao Jun, Ling Peichun, et al. Experimental study on seismic behavior of autoclaved aerated concrete block walls with core columns [J]. Journal of Beijing University of Technology, 2013, 39(1): 51 − 56. (in Chinese)
[7] Kałuża M. Analysis of in-plane deformation of walls made using AAC blocks strengthened by GFRP mesh [J]. Procedia Engineering, 2017, 193: 393 − 400. doi: 10.1016/j.proeng.2017.06.229
[8] Arslan M E, Celebi E. An experimental study on cyclic behavior of aerated concrete block masonry walls retrofitted with different methods [J]. Construction and Building Materials, 2019, 200: 226 − 239. doi: 10.1016/j.conbuildmat.2018.12.132
[9] Kubica J, Galman I. Comparison of two ways of AAC block masonry strengthening using CFRP strips-diagonal compression test [J]. Procedia Engineering, 2017, 193: 42 − 49.
[10] GB 50702−2011, 砌体结构加固设计规范 [S]. 北京: 中国建筑工业出版社, 2011. GB 50702−2011, Code for design of strengthening masonry structures [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
[11] JGJ/T 381−2016, 纤维片材加固砌体结构设计规范 [S]. 北京: 中国建筑工业出版社, 2016. JGJ/T 381−2016, Technical code for strengthening masonry structures with fiber reinforced polymer laminates [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
[12] Darbhanzi A, Marefat M S, Khanmohammadi M. Investigation of in-plane seismic retrofit of unreinforced masonry walls by means of vertical steel ties [J]. Construction and Building Materials, 2014, 52: 122 − 129.
[13] 邓明科, 董志芳, 樊鑫淼, 梁兴文. 高延性混凝土面层加固受弯无筋砌体墙抗震性能试验研究[J]. 工程力学, 2020, 37(3): 46 − 55. Deng Mingke, Dong Zhifang, Fan Xinmiao, Liang Xingwen. Experimental investigation on the seismic behavior of flexural unreinforced masonry walls strengthened by high ductile concrete overlays [J]. Engineering Mechanics, 2020, 37(3): 46 − 55. (in Chinese)
[14] 邓明科, 高晓军, 梁兴文. ECC面层加固砖墙抗震性能试验研究[J]. 工程力学, 2013, 30(6): 168 − 174. Deng Mingke, Gao Xiaojun, Liang Xingwen. Experimental investigation on aseismic behavior of brick wall strengthened with ECC splint [J]. Engineering Mechanics, 2013, 30(6): 168 − 174. (in Chinese)
[15] Dehghani A, Nateghi-Alahi F, Fischer G. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames [J]. Engineering Structures, 2015, 105: 197 − 208. doi: 10.1016/j.engstruct.2015.10.013
[16] 邓明科, 杨铄, 梁兴文. 高延性混凝土单面加固构造柱约束砖砌体墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(4): 10 − 19. Deng Mingke, Yang Shuo, Liang Xingwen. Experimental studies on seismic behavior of confined masonry walls strengthened with single HDC layer [J]. China Civil Engineering Journal, 2018, 51(4): 10 − 19. (in Chinese)
[17] Deng Mingke, Yang Shuo. Cyclic testing of unreinforced masonry walls retrofitted with engineered cementitious composites [J]. Construction and Building Materials, 2018, 177: 395 − 408. doi: 10.1016/j.conbuildmat.2018.05.132
[18] 邓明科, 杨铄, 梁兴文. 高延性混凝土加固无筋砖砌体墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(6): 43 − 53. Deng Mingke, Yang Shuo, Liang Xingwen. Experimental studies on seismic behavior of unreinforced masonry walls strengthened with HDC layer [J]. China Civil Engineering Journal, 2018, 51(6): 43 − 53. (in Chinese)
[19] Deng M, Dong Z, Ma P. Cyclic loading tests of flexural-failure dominant URM walls strengthened with engineered cementitious composite [J]. Engineering Structures, 2019, 194: 173 − 182. doi: 10.1016/j.engstruct.2019.05.073
[20] 邓明科, 杨铄, 王露. 高延性混凝土加固无筋砖墙抗震性能试验研究与承载力分析[J]. 工程力学, 2018, 35(10): 101 − 111, 123. doi: 10.6052/j.issn.1000-4750.2017.06.0495 Deng Mingke, Yang Shuo, Wang Lu. Experimental and bearing capacity studies on the seismic behavior of unreinforced masonry walls strengthened with HDC layers [J]. Engineering Mechanics, 2018, 35(10): 101 − 111, 123. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0495
[21] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116 − 125. Deng Mingke, Dong Zhifang, Yang Shuo, Wang Lu, Zhou Tiegang. Shaking table test on damaged masonry structure reinforced with high ductile concrete layer [J]. Engineering Mechanics, 2019, 36(7): 116 − 125. (in Chinese)
[22] 秦萌. 高延性纤维混凝土受压力学性能试验研究 [D]. 西安: 西安建筑科技大学, 2014. Qin Meng. Experimental study of compressive mechanical property of engineered cementitious composites [D]. Xi’an: Xi’an University of Architecture and Technology, 2014. (in Chinese)
[23] 邓明科, 孙宏哲, 梁兴文, 等. 延性纤维混凝土抗弯性能的试验研究[J]. 工业建筑, 2014, 44(5): 85 − 90. Deng Mingke, Sun Hongzhe, Liang Xingwen, et al. Experimental study of flexural behavior of ductile fiber reinforced concrete [J]. Industry Construction, 2014, 44(5): 85 − 90. (in Chinese)
[24] JGJ/T 101−2015, 建筑抗震试验方法规程 [S]. 北京: 中国建筑工业出版社, 2015. JGJ/T 101−2015, Specification of testing methods for earthquake resistant building [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[25] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010. GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[26] GB 50003−2011, 砌体结构设计规范 [S]. 北京: 中国建筑工业出版社, 2011. GB 50003−2011, Code for design of masonry structures [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
[27] JGJ 116−2009, 建筑抗震加固技术规程 [S]. 北京: 中国建筑工业出版社, 2009. JGJ 116−2009, Technical specification for seismic strengthening of buildings [S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)
[28] Suryanto B, Nagai K, Maekawa K. Smeared-crack modeling of R/ECC membranes incorporating an explicit shear transfer model [J]. Journal of Advanced Concrete Technology, 2010, 8(3): 315 − 326. doi: 10.3151/jact.8.315
[29] DBJ 61/T 112−2016, 高延性混凝土应用技术规程 [S]. 北京: 中国建材工业出版社, 2016. DBJ 61/T 112−2016, Technical specification for application of high ductile concrete [S]. Beijing: China Building Materials Press, 2016. (in Chinese)
[30] 伍云天, 李英民, 刘立平, 等. 圈梁-构造柱约束砖砌体房屋的抗地震倒塌性能分析[J]. 工业建筑, 2012, 42(3): 25 − 32. Wu Yuntian, Li Yingmin, Liu Liping, et al. Earthquake-induced collapse prevention capacity of brick masonry structure confined with tie columns and tie beams [J]. Industry Construction, 2012, 42(3): 25 − 32. (in Chinese)
[31] Federal Emergency Management Agency. Evaluation of earthquake damaged concrete and masonry wall buildings: Basic procedures manual [S]. FEMA-306, Applied Technology Council, Washington D. C., 1998.
[32] 熊立红, 张敏政. 设置芯柱-构造柱混凝土砌块墙体抗震剪切承载力计算[J]. 地震工程与工程振动, 2004, 24(2): 82 − 87. doi: 10.3969/j.issn.1000-1301.2004.02.015 Xiong Lihong, Zhang Minzheng. Evaluation of seismic shear strength of concrete-block walls with core columns/constructional columns [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(2): 82 − 87. (in Chinese) doi: 10.3969/j.issn.1000-1301.2004.02.015