Loading [MathJax]/jax/output/SVG/jax.js

钢-木组合柱轴心受压性能试验研究

刘朋, 钱哲, 王浩然, 王元清

刘朋, 钱哲, 王浩然, 王元清. 钢-木组合柱轴心受压性能试验研究[J]. 工程力学, 2021, 38(S): 159-166. DOI: 10.6052/j.issn.1000-4750.2020.05.S028
引用本文: 刘朋, 钱哲, 王浩然, 王元清. 钢-木组合柱轴心受压性能试验研究[J]. 工程力学, 2021, 38(S): 159-166. DOI: 10.6052/j.issn.1000-4750.2020.05.S028
LIU Peng, QIAN Zhe, WANG Hao-ran, WANG Yuan-qing. EXPERIMENTAL STUDY ON BEHAVIOR OF STEEL TIMBER COLUMNS UNDER AXIAL LOAD[J]. Engineering Mechanics, 2021, 38(S): 159-166. DOI: 10.6052/j.issn.1000-4750.2020.05.S028
Citation: LIU Peng, QIAN Zhe, WANG Hao-ran, WANG Yuan-qing. EXPERIMENTAL STUDY ON BEHAVIOR OF STEEL TIMBER COLUMNS UNDER AXIAL LOAD[J]. Engineering Mechanics, 2021, 38(S): 159-166. DOI: 10.6052/j.issn.1000-4750.2020.05.S028

钢-木组合柱轴心受压性能试验研究

基金项目: 辽宁省教育厅青年项目(2017023)
详细信息
    作者简介:

    刘 朋(1983−),男,辽宁盘锦人,讲师,博士,主要从事冷弯薄壁型钢结构研究(E-mail: pliu@sut.edu.cn)

    钱 哲(1997−),男,江苏连云港人,硕士生,主要从事钢木组合结构研究(E-mail: 1141182897@qq.com)

    王浩然(1999−),男,安徽合肥人,本科生,主要从事桥梁与地下隧道研究(E-mail: whr15684371702@163.com)

    通讯作者:

    王元清(1963−),男,安徽霍山人,教授,博士,主要从事结构工程研究(E-mail: wang-yq@mail.tsinghua.edu.cn)

  • 中图分类号: TU391

EXPERIMENTAL STUDY ON BEHAVIOR OF STEEL TIMBER COLUMNS UNDER AXIAL LOAD

  • 摘要: 提出了一种钢木组合柱形式,该组合柱是将木方外包在十字钢骨周围,钢、木之间通过螺栓连接或焊接翼缘结合;进行了12个组合柱轴心受压试验,研究了钢木组合柱的工作机理与破坏模式,讨论了钢材厚度、长细比、螺栓间距等对轴压承载力的影响。试验结果表明:组合柱中钢骨为主要承受轴向压力,外围木方能够对钢材提供一定的屈曲约束;钢材厚度影响承载力主要因素;构件长细比大于5.5,外围木约束效果明显;螺栓间距对承载力的影响较小。通过有限元模拟与试验数据对比分析,吻合良好,该研究可为后续钢木组合结构研究提供参考。
    Abstract: A new form of steel wood composite column is proposed. The composite column is wrapped around the cross steel bone, and the steel and wood are connected by bolting or welding flanges. 12 composite columns are tested under axial compression loads, and working mechanism and failure mode of steel wood composite column are studied. Meanwhile, the influences of steel thickness, slenderness ratio and bolt spacing on the axial bearing capacity are discussed. The test results show that the steel bone is mainly subjected to axial pressure, and the timber can provide certain buckling restraint to avoid steel buckling; the thickness of steel is the main factor for bearing capacity; the slenderness ratio of steel is greater than 5.5, and the effect of timber restraint is obvious; the bolt spacing has little effect on bearing capacity. Through the comparative analysis of finite element simulation and experiment data, the agreement is good. It can provide reference for the subsequent research on steel timber composite structures.
  • 图  1   钢-木组合柱示意图

    Figure  1.   Schematic diagram of steel-wood composite column

    图  2   试验加载装置

    Figure  2.   Test loading device

    图  3   测点布置

    Figure  3.   Measuring point layout

    图  4   试件破坏形态

    Figure  4.   Failure pattern of specimen

    图  5   荷载-位移曲线

    Figure  5.   Load-displacement curve

    图  6   螺栓间距的影响

    Figure  6.   Influence of bolt spacing

    图  7   钢材厚度的影响

    Figure  7.   Influence of steel thickness

    图  8   外加翼缘的影响

    Figure  8.   Additional flange influence

    图  9   长细比的影响

    Figure  9.   Influence of slenderness ratio

    图  10   荷载-应变曲线

    Figure  10.   Load-strain curve

    图  11   组合柱有限元模型

    Figure  11.   Composite column finite element model

    图  12   试验与模拟荷载-位移曲线对比

    Figure  12.   Comparison of test and simulated load-displacement curves

    表  1   试件的设计参数

    Table  1   The design parameters of Specimens

    试件编号柱长L/mm板厚t/mm螺栓间距S/mm翼缘长细比λ
    STC-15003100 2.5
    STC-280031004.0
    STC-380051004.0
    STC-480051504.0
    STC-5110031005.5
    STC-6110051005.5
    STC-7110051505.5
    STC-8140031007.0
    STC-950032.5
    STC-1080034.0
    STC-11110035.5
    STC-12140037.0
    注:L为试件长度;t为十字钢厚度;S为螺栓间距;λ为试件长细比。
    下载: 导出CSV

    表  2   钢材力学性能指标

    Table  2   Mechanical properties of steel

    钢材弹性模量E/MPa抗拉强度fy/MPa抗压强度fu/MPa
    3 mm厚度2×105418240
    5 mm厚度2×105424259
    下载: 导出CSV

    表  3   主要试验结果

    Table  3   Main test results

    试件编号竖向位移/mm极限荷载/kN
    STC-1 7.33 813.53
    STC-29.82780.07
    STC-37.731019.08
    STC-49.12996.10
    STC-58.91760.35
    STC-67.711060.45
    STC-76.801040.35
    STC-89.24760.49
    STC-95.53941.67
    STC-106.97965.90
    STC-118.83911.89
    STC-1211.71819.38
    下载: 导出CSV

    表  4   承载力有限元结果与试验结果对比

    Table  4   Comparison of bearing capacity between finite element results and test results

    试件编号试验值
    Pu,Exp/kN
    模拟值
    Pu,FE/kN
    差值
    (Pu,FEPu,Exp)/Pu,Exp/(%)
    STC-1 813.53 850.24 5
    STC-2780.07753.53−3
    STC-31019.08994.45−2
    STC-4996.10944.63−5
    STC-5760.35800.785
    STC-61060.451094.783
    STC-71040.351073.043
    STC-8760.49799.535
    STC-10965.90985.342
    STC-11911.89936.093
    下载: 导出CSV
  • [1] 王小盾. 钢木组合结构的研究现状与发展前景 [C]// 中国钢结构协会, 2011全国钢结构学术年会论文集, 2011: 678 − 681.

    Wang Xiaodun. Research status and development prospects of steel-wood composite structures [C]// China Steel Structure Association, Proceedings of the 2011 National Annual Conference on Steel Structures, 2011: 678 − 681.

    [2] 何敏娟, 罗琪, 董文晨, 董翰林, 李征. 钢木混合结构体系抗震性能试验研究 [C]// 中国土木工程学会, 中国土木工程学会2017年学术年会论文集, 2017: 22.

    He Minjuan, Luo Qi, Dong Wenchen, et al. Experimental study on seismic performance of steel-wood hybrid structure system [C]// China Civil Engineering Society, Proceedings of 2017 Annual Conference of China Civil Engineering Society, 2017: 22. (in Chinese)

    [3] 何敏娟, 陶铎, 李征. 多高层木及木混合结构研究进展[J]. 建筑结构学报, 2016, 37(10): 1 − 9.

    He Minjuan, Tao Duo, Li Zheng. Research progress of multi-story and high-rise timber and timber hybrid structures [J]. Journal of Building Structures, 2016, 37(10): 1 − 9. (in Chinese)

    [4]

    Awaludin A, Rachmawati K, Aryati M, et al. Development of Cold Formed Steel – Timber composite for roof structures: Compression members [J]. Procedia Engineering, 2015, 125: 850 − 856. doi: 10.1016/j.proeng.2015.11.052

    [5]

    Rinchen, Kim J. R. Rasmussen, Hao Zhang. Design of cold-formed steel single C-section portal frames [J]. Journal of Constructional Steel Research, 2019: 162.

    [6]

    Sivaganesh Selvaraj, Mahendrakumar Madhavan. Behaviour of gypsum sheathed point-symmetric cold-formed steel members: Assessment of AISI design method [J]. Structures, 2019: 22.

    [7] 周绪红, 高婷婷, 石宇. 冷弯薄壁型钢梁-OSB板组合楼盖静力挠度及振动性能试验研究[J]. 工程力学, 2014, 31(5): 211 − 217. doi: 10.6052/j.issn.1000-4750.2012.12.0969

    Zhou Xuhong, Gao Tingting, Shi Yu. Experimental study on static deflection and vibration behavior of cold-formed steel osb composite floor[J]. Engineering Mechanics [J]. Engineering Mechanics, 2014, 31(5): 211 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.0969

    [8] 陈明, 黄骥辉, 赵根田. 组合截面冷弯薄壁型钢结构研究进展[J]. 工程力学, 2016, 33(12): 1 − 11. doi: 10.6052/j.issn.1000-4750.2016.05.ST03

    Chen Ming, Huang Jihui, Zhao Gentian. Research progress of compound section cold-formed thin-wall steel structures [J]. Engineering Mechanics, 2016, 33(12): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.ST03

    [9] 李建春. 新型预应力钢-木组合柱受力性能研究 [D]. 绵阳: 西南科技大学, 2019.

    Li Jianchun. Study on the mechanical performance of a new type of prestressed steel-wood composite column [D]. Mianyang: Southwest University of Science and Technology, 2019. (in Chinese)

    [10] 潘福婷, 王艳华, 吴京. 钢木组合柱的有限元分析及其设计[J]. 阴山学刊(自然科学版), 2016, 30(1): 26 − 29.

    Pan Futing, Wang Yanhua, Wu Jing. Finite element analysis and design of steel-wood composite column [J]. Yinshan Academic Journal (Natural Science Edition), 2016, 30(1): 26 − 29. (in Chinese)

    [11] 孟颖. 钢—木组合柱抗侧力性能研究[D]. 北京: 北京建筑大学, 2017.

    Meng Ying. Research on the lateral force resistance performance of steel-wood composite columns [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017. (in Chinese)

    [12] 李威, 高颖, 孟鑫淼, 等. 角钢-集成材L形组合柱的受压性能研究[J]. 林业工程学报, 2020, 5(1): 53 − 60.

    Li Wei, Gao Ying, Meng Xinmiao, et al. Compressive performance of angle steel-glulam L-shaped composite column [J]. Journal of Forestry Engineering, 2020, 5(1): 53 − 60. (in Chinese)

    [13] GB/T 15777−2017, 木材的顺纹抗压弹性模量测定方法[S]. 北京: 中国标准出版社, 2017.

    GB/T 15777−2017, Determination of compressive modulus of wood along the grain [S]. Beijing: China Standard Press, 2017. (in Chinese)

    [14] GB/T 1931−2009, 木材含水率测定方法[S]. 北京: 中国标准出版社, 2009.

    GB/T 1931−2009, Determination of wood moisture content [S]. Beijing: China Standard Press, 2009. (in Chinese)

    [15] GB/T 1933−2009, 木材密度测定方法[S]. 北京: 中国标准出版社, 2009.

    GB/T 1933−2009, Method for determination of wood density [S]. Beijing: China Standard Press, 2009. (in Chinese)

    [16] GB/T 1935−2009, 木材顺纹抗压强度试样方法[S]. 北京: 中国标准出版社, 2009.

    GB/T 1935−2009, Test Method for compressive strength of wood along the grain [S]. Beijing: China Standard Press, 2009. (in Chinese)

    [17] GB/T 228−2002, 金属材料室温拉伸试验方法[S]. 北京: 中国标准出版社, 2002.

    GB/T 228−2002, Room temperature tensile test method for metallic materials [S]. Beijing: China Standard Press, 2002. (in Chinese)

图(13)  /  表(4)
计量
  • 文章访问数:  714
  • HTML全文浏览量:  275
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-17
  • 修回日期:  2020-11-30
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-06-09

目录

    /

    返回文章
    返回