Abstract:
The finite element software ANSYS was used to establish the finite element model for the radial steel gate with compression bars. The static and dynamic characteristics of the gate with compression bars were compared with the traditional gate, and the effectiveness of the arrangement of compression bars was verified. According to the operation characteristics of the gate, compression bars were evenly arranged at the branch point of the arm and the lower flange of the longitudinal beam. The influence of the compression bar arrangement on the static and dynamic characteristics of the radial gate was analyzed by the finite element model. The static analysis, modal analysis and harmonic response analysis were carried out for the two types of gates. The results indicate that: the stress and displacement of the proposed gate with compression bars are greatly reduced under the hydrostatic load, and the overall ultimate bearing capacity of the gate is greatly increased with the minimum increase of steel consumption; in the case of no water closure, the natural frequency of the gate increases with the arrangement of the pressure bar; the amplitude response frequency of the pressure bar arrangement gate increases, and the response amplitude of each key node decreases, which achieves the purpose of improving the overall stability and anti-vibration performance of the structure.