ONE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF WARPING TORSION FOR THIN-WALLED MEMBERS WITH OPEN-CLOSED CROSS SECTIONS BASED ON COMPATIBLE WARPING FIELD
-
摘要: 开口及闭口薄壁杆件约束扭转问题已由经典Timoshenko和Benscoter理论解决。然而,开闭口混合薄壁截面杆件约束扭转分析必须考虑开、闭口部分翘曲能力的差异,翘曲剪流形成机理有待进一步研究。该文假定开、闭口截面翘曲分别满足Vlasov和Umanskii假定,考虑开、闭口截面公共节点翘曲连续性要求,建立含有待定翘曲参数的协调翘曲模型。由截面受力平衡,确定翘曲参数显式列式,提出开闭口混合薄壁截面杆件约束扭转分析的一维有限元模型。算例及参数分析结果表明,基于Umanskii第二理论的I类方法在悬臂板及闭口周边引入附加剪流,影响翘曲剪应力精度。基于Umanskii第二理论的II类方法只能计算截面板件平均剪应力,无法反映真实翘曲剪流分布。基于Vlasov约束扭转假定的Beam-189单元忽略闭口周边约束效应产生的附加翘曲及剪流,影响翘曲正应力和剪应力精度。该文方法与Shell-63单元能得到基本吻合的变形与应力结果,说明一维梁元能正确反映开闭口混合薄壁截面杆件约束扭转及翘曲刚度。
-
关键词:
- 开闭口混合薄壁截面杆件 /
- 协调翘曲场 /
- 约束扭转 /
- 翘曲应力 /
- 一维有限元分析
Abstract: The warping torsion of thin-walled members with open and closed cross sections was well addressed by the classical theories presented by Timoshenko and Benscoter, respectively. However, the restrained torsional behavior of thin-walled members with open-closed profile cannot be correctly accounted for without considering the distinctive warping properties between open and closed parts of the cross section. The development of warping shear flows within the mid-plane of the cross section needs further elaborations. This work assumes that the torsional warping of open and closed segments correspondingly adheres to the classical assumptions of Vlasov and Umanskii. The warping displacements are required to coincide at the common points of the open and closed segments, leading to a compatible warping field which contains undetermined warping parameter. The warping parameter is explicitly obtained based on the equilibrium requirements. A one-dimensional finite element model is naturally developed for warping torsion analysis of a thin-walled member with open-closed cross section. It is shown by numerical investigations and parametric studies that the type I method based on the Second Umanskii theory can artificially introduce the additional shear flows that reduce the accuracy of shear stresses. As an alternative, the type II method based on the Second Umanskii theory can only obtain the average shear stress of each segment of thin-walled section which fails to provide the correct distribution of shear flows. The Beam-189 element model based on the Vlasov assumption unfortunately neglects the induced warping displacements and shear flows by the constrained effects of the closed contour. Hence, the use of Beam-189 element will reduce the accuracies of both normal and shear stresses. Close agreement can be observed between the Shell-63 element model and the present method for calculating the torsional deformation and stresses, which demonstrates the capability of the one-dimensional finite element model to describe the torsional and warping stiffness of the thin-walled members with open-closed cross section. -
-
表 1 悬臂箱梁约束扭转位移和正应力
Table 1 Displacements and normal stresses for warping torsion of a cantilever box girder
计算模型 自由端扭转角/(×10−5 rad) 自由端翘曲/(×10−5 m)/初等梁理论翘曲/(×10−5 m) 固定端正应力/MPa/初等梁理论应力/MPa ③ ② ① ③ ② ① 本文一维梁元 −4.95 −1.838/−1.84 −10.72/−10.71 −14.21/−14.24 −0.091/−0.092 −0.545/−0.536 −0.687/−0.712 Shell-63单元 −5.05 −1.7/−1.84 −11.0/−10.71 −14.0/−14.24 −0.092/−0.092 −0.54/−0.536 −0.68/−0.712 文献[7] − − − − −0.091/−0.092 −0.598/−0.536 −0.55/−0.712 注:翘曲位移和应力的正负号与Ox坐标轴指向保持一致。 表 2 均布扭矩作用下简支箱梁约束扭转位移和应力
Table 2 Displacements and stresses for warping torsion of a simply-supported box girder under the action of uniformly distributed torques
表 3 跨中集中偏载作用下简支箱梁正应力和扭转角
Table 3 Normal stresses and angle of twist of a simply-supported box girder subjected to an eccentric transverse load applied at mid-span
计算模型 跨中扭转角/
(×10−2rad)跨中正应力/(×108Pa)/
弯曲正应力/(×108Pa)⑥ ⑤ ④ 本文一维梁元 2.802 −2.69/−2.93 −3.14/−2.93 3.69/3.57 Beam-189模型 2.678 −2.70/−2.93 −3.12/−2.93 3.67/3.57 Shell-63模型 2.783 −2.82/−2.93 −3.32/−2.93 4.01/3.57 Umanskii第二理论 2.812 −2.79/−2.93 −3.05/−2.93 3.63/3.57 -
[1] Vlasov V Z. Thin-walled elastic beams, second edition [M]. Jerusalem: Israel Program for Scientific Translations, 1961: 3 − 51, 222 − 255.
[2] Timoshenko S P, Gere J M. Theory of elastic stability [M]. 2nd ed. New York: McGraw-Hill Book Company, 1961: 212 − 224.
[3] Murray N W. Introduction to the theory of thin-walled structures [M]. New York: Oxford University Press, 1984: 54 − 134.
[4] 徐勋, 叶华文, 强士中. 带悬臂板薄壁箱梁的扭转和畸变分析[J]. 铁道学报, 2015, 37(10): 83 − 91. doi: 10.3969/j.issn.1001-8360.2015.10.012 Xu Xun, Ye Huawen, Qiang Shizhong. Torsion and distorsion analysis of thin-walled box girder with cantilever flanges [J]. Journal of the China Railway Society, 2015, 37(10): 83 − 91. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.10.012
[5] 郭金琼, 房贞政, 郑振. 箱形梁设计理论 [M]. 第2版. 北京: 人民交通出版社, 2008: 51 − 92. Guo Jinqiong, Fang Zhenzheng, Zheng Zhen. Design theory of box girder [M]. 2nd ed. Beijing: China Communication Press, 2008: 51 − 92. (in Chinese)
[6] 周履. 关于薄壁箱形梁的悬臂翼缘板在翘曲扭转中作用的探讨[J]. 世界桥梁, 2003(3): 28 − 33. doi: 10.3969/j.issn.1671-7767.2003.03.009 Zhou Lü. Exploration of contribution of cantilever flanges of thin-walled box girder to its behavior in warping torsion [J]. World Bridges, 2003(3): 28 − 33. (in Chinese) doi: 10.3969/j.issn.1671-7767.2003.03.009
[7] 张元海, 林丽霞. 偏心轴向荷载作用下薄壁箱梁的约束扭转翘曲应力研究[J]. 工程力学, 2013, 30(3): 32 − 36. Zhang Yuanhai, Lin Lixia. Research on warping stress of restrained torsion for thin-walled box girder under eccentric axial load [J]. Engineering Mechanics, 2013, 30(3): 32 − 36. (in Chinese)
[8] 马俊军, 蔺鹏臻. 考虑悬臂板贡献的箱梁约束扭转效应研究[J]. 铁道建筑, 2018, 58(3): 10 − 14. doi: 10.3969/j.issn.1003-1995.2018.03.03 Ma Junjun, Lin Pengzhen. Study on restrained torsion effect for box girder considering contribution of cantilever slab [J]. Railway Engineering, 2018, 58(3): 10 − 14. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.03.03
[9] 聂国隽, 钱若军. 考虑约束扭转的薄壁梁单元刚度矩阵[J]. 计算力学学报, 2002, 19(3): 344 − 348. doi: 10.3969/j.issn.1007-4708.2002.03.018 Nie Guojuan, Qian Ruojun. Element stiffness matrix of thin-walled beam considering restrained torsion [J]. Chinese Journal of Computational Mechanics, 2002, 19(3): 344 − 348. (in Chinese) doi: 10.3969/j.issn.1007-4708.2002.03.018
[10] Dikaros I C, Sapountzakis E J, Argyridi A K. Generalized warping effect in the dynamic analysis of beams of arbitrary cross section [J]. Journal of Sound and Vibration, 2016, 369: 119 − 146. doi: 10.1016/j.jsv.2016.01.022
[11] Qiao P, Di J, Qin F J. Warping torsional and distorsional stress of composited box girder with corrugated steel webs [J]. Mathematical Problems in Engineering, 2018, 2018(6): 1 − 13.
[12] Cambronero-Barrientos F, Díaz-del-Valle J, Martínez-Martínez J A. Beam element for thin-walled beams with torsion, distortion, and shear [J]. Engineering Structures, 2017, 143: 571 − 588. doi: 10.1016/j.engstruct.2017.04.020
[13] 胡启平, 涂佳黄, 梁经群. 组合断面薄壁杆件弯扭耦合分析[J]. 工程力学, 2010, 27(7): 52 − 55. Hu Qiping, Tu Jiahuang, Liang Jingqun. Bending-torsion coupling analysis of the composite section thin-walled bar structure [J]. Engineering Mechanics, 2010, 27(7): 52 − 55. (in Chinese)
[14] 王晓峰, 杨庆山. 基于Timoshenko梁理论的薄壁梁弯扭耦合分析[J]. 工程力学, 2008, 25(5): 12 − 16, 21. Wang Xiaofeng, Yang Qingshan. Coupled bend and torsion analysis of the spatial thin-walled beam using Timoshenko theory [J]. Engineering Mechanics, 2008, 25(5): 12 − 16, 21. (in Chinese)
[15] Sapountzakis E J, Mokos V G. Warping shear stresses in non-uniform torsion by BEM [J]. Computational Mechanics, 2003, 30: 131 − 142. doi: 10.1007/s00466-002-0373-4
[16] Günay M G, Timarci T. Static analysis of thin-walled laminated composite closed-section beams with variable stiffness [J]. Composite Structures, 2017, 182: 67 − 78. doi: 10.1016/j.compstruct.2017.08.092
[17] Wan H X, Mahendran M. Behaviour and strength of hollow flange channel sections under torsion and bending [J]. Thin-Walled Structures, 2015, 94: 612 − 623. doi: 10.1016/j.tws.2015.05.013
[18] 陈伯真, 胡毓仁. 薄壁结构力学 [M]. 上海: 上海交通大学出版社, 1998: 65 − 67. Chen Bozhen, Hu Yuren. Mechanics of thin-walled structures [M]. Shanghai: Shanghai Jiaotong University Press, 1998: 65 − 67. (in Chinese)
[19] Kindmann R, Kraus M. Steel structures-design using FEM [M]. Berlin: Ernst & Sohn, 2011: 261 − 263.