Processing math: 100%

内嵌钢板及边缘框架相互作用对带连梁低屈服点钢板剪力墙结构受力性能的影响

王萌, 郭勇超

王萌, 郭勇超. 内嵌钢板及边缘框架相互作用对带连梁低屈服点钢板剪力墙结构受力性能的影响[J]. 工程力学, 2020, 37(9): 184-198. DOI: 10.6052/j.issn.1000-4750.2019.10.0640
引用本文: 王萌, 郭勇超. 内嵌钢板及边缘框架相互作用对带连梁低屈服点钢板剪力墙结构受力性能的影响[J]. 工程力学, 2020, 37(9): 184-198. DOI: 10.6052/j.issn.1000-4750.2019.10.0640
WANG Meng, GUO Yong-chao. STUDY ON PERFORMANCE OF COUPLED LOW YIELD POINT STEEL PLATE SHEAR WALLS AFFECTED BY THE INTERACTION OF INFILL PLATES AND BOUNDARY FRAME[J]. Engineering Mechanics, 2020, 37(9): 184-198. DOI: 10.6052/j.issn.1000-4750.2019.10.0640
Citation: WANG Meng, GUO Yong-chao. STUDY ON PERFORMANCE OF COUPLED LOW YIELD POINT STEEL PLATE SHEAR WALLS AFFECTED BY THE INTERACTION OF INFILL PLATES AND BOUNDARY FRAME[J]. Engineering Mechanics, 2020, 37(9): 184-198. DOI: 10.6052/j.issn.1000-4750.2019.10.0640

内嵌钢板及边缘框架相互作用对带连梁低屈服点钢板剪力墙结构受力性能的影响

基金项目: 国家自然科学基金项目(51778042);北京市自然科学基金项目(8182042)
详细信息
    作者简介:

    郭勇超(1995−),男,山东潍坊人,硕士生,从事钢结构抗震研究(E-mail: imguoyongchao@163.com)

    通讯作者:

    王 萌(1985−),女,黑龙江哈尔滨人,教授,博士,从事钢结构抗震研究(E-mail: wangmeng1117@gmail.com)

  • 中图分类号: TU398.2

STUDY ON PERFORMANCE OF COUPLED LOW YIELD POINT STEEL PLATE SHEAR WALLS AFFECTED BY THE INTERACTION OF INFILL PLATES AND BOUNDARY FRAME

  • 摘要: 为满足快速发展的高层建筑结构对抗震性能及空间灵活性的要求,将高耗能能力、高延性的低屈服点钢材与带连梁钢板剪力墙组合成新型带连梁低屈服点钢板剪力墙结构体系。采用有限元软件ABAQUS建立带连梁钢板剪力墙结构模型,结合国内外已有的典型试验结果验证数值方法的有效性。在此基础上,设计5个不同耦合度的低屈服点钢板剪力墙结构模型进行单调和循环加载,对比分析其损伤机制、承载性能及滞回耗能能力,探讨内嵌钢板与边缘框架的相互作用对结构及构件受力性能的影响,给出设计建议。结果表明:带连梁低屈服点钢板剪力墙结构内嵌钢板与边缘框架相互作用能够有效提高整体结构承载力、承载效率以及耗能能力。综合考虑材料利用率、承载能力及耗能能力,建议连梁耦合度控制在0.45以内。随着连梁耦合度的提高,边缘框架分担剪力多至60%,内部框架柱的轴力显著减小,连梁转角不断减小。因此,在带连梁低屈服点钢板剪力墙结构设计过程中应充分考虑内嵌钢板与边缘框架的相互作用,适当减小内嵌钢板设计厚度及边缘框架截面尺寸,提高材料利用率及设计经济性。同时,与纯框架抗侧性能相比,内嵌钢板与边缘框架的相互作用有效提高了边缘框架的初始抗侧刚度及承载力。
    Abstract: In order to satisfy the requirements on seismic behavior and spatial flexibility of high-rise buildings, based on the combination of high-performance materials and high-performance structures, the low yield point (LYP) steel plate shear wall structure with coupling beams was proposed. The finite element models of steel plate shear wall structures were established by ABAQUS, which were proved accurate through a comparison with the published tests. Using the verified numerical method, five coupled and uncoupled LYP steel plate shear wall structure models with different degrees of coupling were established. These models were subjected to static pushover loads and cyclic loads to compare their failure modes, lateral load carrying-capacities, hysteretic behaviors and energy dissipation performances. The influence of the interaction between infill plates and boundary frame on the mechanical properties of the structures and their members was discussed, and some suggestions were proposed for the design of coupled steel plate shear wall structures. The analysis results show that the interaction between infill plates and boundary frame can effectively improve the bearing capacity, bearing efficiency and energy dissipation capacity of the whole structure. Considering the material efficiency, bearing capacity and energy dissipation capacity, it is suggested that the coupling degree of the connecting beam should be controlled within 0.45. With the increase of coupling degree, the shear force shared by the boundary frame increases to 60%, the axial forces of the internal frame columns significantly decreases, and the rotation of coupling beams keeps decreasing. Therefore, the interaction between infill plates and boundary frame should be fully considered in the design of coupled shear wall structures, which is able to effectively reduce the design thickness of infill plates and the section size of boundary frame, and improves the material efficiency and design economy. At the same time, compared with the pure frame, the interaction between infill plates and boundary frame effectively improves the initial lateral stiffness and bearing capacity of the boundary frame.
  • 图  1   钢板剪力墙结构

    Figure  1.   Steel plate shear wall structures

    图  2   文献[18]试件详细尺寸及有限元模型 /mm

    Figure  2.   Dimension and numerical model of specimen in reference [18]

    图  3   文献[18]试验有限元结果对比

    Figure  3.   Comparison between test and numerical simulation in reference [18]

    图  4   文献[19]试验试件尺寸及数值模型 /mm

    Figure  4.   Dimension and numerical model of specimen in reference [19]

    图  5   文献[19]试验有限元结果对比

    Figure  5.   Comparison between test and numerical simulation in reference [19]

    图  6   带连梁低屈服点钢板剪力墙试件示意图  /mm

    Figure  6.   Sketch of coupled steel plate shear wall structures

    图  7   纯框架试件示意图 /mm

    Figure  7.   Sketch of bare frame

    图  8   荷载加载制度

    Figure  8.   Loading pattern

    图  10   内嵌钢板剪力分配及各构件损伤顺序

    Figure  10.   Shear distributions of SPSW structures and damage sequence of each component

    图  9   试件破坏形态

    Figure  9.   Failure modes of specimens

    图  11   MpCB/MpHBEVP/VT关系拟合

    Figure  11.   The fitting result between MpCB/MpHBE and VP/VT

    图  12   联肢剪力墙在水平荷载作用下受力模式

    Figure  12.   Lateral force resisting mechanism of SPSW

    图  13   墙肢内力分布

    Figure  13.   Axial force and bending moment of piers

    图  14   框架柱内力分布

    Figure  14.   Internal forces of columns

    图  15   连梁耦合度

    Figure  15.   Degree of coupling

    图  16   连梁转角示意图[17]

    Figure  16.   Definition for rotation of coupling beams[17]

    图  17   连梁转角

    Figure  17.   Rotation of coupling beams

    图  18   循环荷载下试件剪力分配

    Figure  18.   Shear distribution of SPSW structures under cyclic loads

    图  19   循环荷载下墙肢轴力与弯矩

    Figure  19.   Axial force and moment of piers under cyclic loads

    图  20   循环荷载下框架柱内力分布

    Figure  20.   Internal forces of columns under cyclic loads

    图  21   各组件耗能对比

    Figure  21.   Energy dissipation of components

    图  22   各组件耗能比例

    Figure  22.   Energy dissipation proportion of components

    表  1   试件参数说明

    Table  1   Parameters of specimen /mm

    试件名称楼层内嵌钢板L×H×t(宽×高×厚)框架柱(工字钢)框架梁(工字钢)连梁(工字钢)用钢量/t
    文献[19] 1 1196×1915×3.5 204×200×16×24 170×120×7×10 170×160×7×22 2.58
    2 1196×1350×3.5
    3 1196×395×3.5
    C1.0
    MpCBMpHBE=1.0
    1 1150×1915×3.5 250×200×24×26 170×120×6×8 170×120×6×8 2.96
    2 1150×1350×3.5
    3
    C2.0
    MpCBMpHBE=2.0
    1 1150×1915×3.5 250×200×24×26 170×120×6×8 170×120×16×18 3.06
    2 1150×1350×3.5
    3
    C4.0
    MpCBMpHBE=4.0
    1 1150×1915×3.5 250×200×24×26 170×120×6×8 170×170×22×26 3.20
    2 1150×1350×3.5
    3
    SPSW 1 2300×1915×3.5 250×200×24×26 170×120×6×8 1.68
    2 2300×1350×3.5
    3
    C-SPSW 1 1150×1915×3.5 250×200×24×26 170×120×6×8 2.88
    2 1150×1350×3.5
    3
    下载: 导出CSV
  • [1] 郭彦林, 董全利. 钢板剪力墙的发展与研究现状[J]. 钢结构, 2005, 20(1): 1 − 6. doi: 10.3969/j.issn.1007-9963.2005.01.001

    Guo Yanlin, Dong Quanli. Research and application of steel plate shear wall in high-rise buildings [J]. Steel Construction, 2005, 20(1): 1 − 6. (in Chinese) doi: 10.3969/j.issn.1007-9963.2005.01.001

    [2] 詹永旗. 带钢连梁混合双肢剪力墙结构抗震性能实验与设计研究[D]. 长沙: 中南大学, 2009.

    Zhan Yongqi. Experimental and design study on the seismic performance of composite shear wall structure with steel beam[D]. Changsha: Central South University, 2009. (in Chinese)

    [3] 王萌, 钱凤霞, 杨维国, 等. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2): 60 − 68.

    Wang Meng, Qian Fengxia, Yang Weiguo, et al. Comparison study on constitutive relationship of low yield point steels, Q345B steel and Q460D steel [J]. Engineering Mechanics, 2017, 34(2): 60 − 68. (in Chinese)

    [4] 王萌, 钱凤霞, 杨维国. 低屈服点LYP160钢材本构关系研究[J]. 建筑结构学报, 2017, 38(2): 55 − 62.

    Wang Meng, Qian Fengxia, Yang Weiguo. Constitutive behavior of low yield point steel LYP160 [J]. Journal of Building Structures, 2017, 38(2): 55 − 62. (in Chinese)

    [5] 郭勇超, 王萌. 带连梁低屈服点钢板剪力墙研究进展 [C]// 中国钢结构协会结构稳定与疲劳分会. 中国钢结构协会结构稳定与疲劳分会第16届(ISSF-2018)学术交流会暨教学研讨会论文集. 青岛: 《钢结构》杂志编辑部, 2018: 420 − 427.

    Guo Yongchao, Wang Meng. Research advance in low yield point steel plate shear wall with coupling [C]// Institute of Structural Stability and Fatigue, China Steel Construction Society. The memoir for Institute of Structural Stability and Fatigue, China Steel Construction Society the 16th (ISSF-2018) Academic Exchange Conference and Teaching Seminars. Qingdao: Steel Construction Journal Editorial Offices, 2018: 420 − 427. (in Chinese)

    [6]

    Lubell A S, Prion H G L, Ventura C E, Rezai M. Unstiffened steel plate shear wall performance under cyclic loading [J]. Journal of Structural Engineering, 2000, 126(4): 453 − 460. doi: 10.1061/(ASCE)0733-9445(2000)126:4(453)

    [7] 陈国栋, 郭彦林. 十字加劲钢板剪力墙的抗剪极限承载力[J]. 建筑结构学报, 2004, 25(1): 71 − 78. doi: 10.3321/j.issn:1000-6869.2004.01.010

    Chen Guodong, Guo Yanlin. Ultimate shear-carrying capacity of steel plate shear wall with cross stiffeners [J]. Journal of Building Structures, 2004, 25(1): 71 − 78. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.01.010

    [8] 徐建. 非加劲薄钢板剪力墙性能试验与设计方法研究 [D]. 重庆: 重庆大学, 2012.

    Xu Jian. Research on the behavior and design methods of unstiffened thin steel plate shear wall [D]. Chongqing: Chongqing University, 2012. (in Chinese)

    [9]

    Qu B, Bruneau M. Design of steel plate shear walls considering boundary frame moment resisting action [J]. Journal of Structural Engineering, 2009, 135(12): 1511 − 1521. doi: 10.1061/(ASCE)ST.1943-541X.0000069

    [10]

    Borello D J, Fahnestock L A. Behavior and mechanisms of steel plate shear walls with coupling [J]. Journal of Constructional Steel Research, 2012, 74: 8 − 16. doi: 10.1016/j.jcsr.2011.12.009

    [11]

    Borello D J, Fahnestock L A. Seismic design and analysis of steel plate shear walls with coupling [J]. Journal of Structural Engineering, 2013, 139(8): 1263 − 1273. doi: 10.1061/(ASCE)ST.1943-541X.0000576

    [12]

    Borello D J. Behavior and large-scale experimental testing of steel plate shear walls with coupling [D]. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014.

    [13]

    Borello D J, Fahnestock L A. Large-scale cyclic testing of steel-plate shear walls with coupling [J]. Journal of Structural Engineering, 2017, 143(10): 04017133. doi: 10.1061/(ASCE)ST.1943-541X.0001861

    [14] 金双双, 欧进萍. 钢板剪力墙钢板与框架相互作用分析[J]. 土木工程学报, 2012, 45(增刊 1): 283 − 287.

    Jin Shuangshuang, Ou Jinping. Characteristics of the wall-frame interaction in steel plate shear walls [J]. China Civil Engineering Journal, 2012, 45(Suppl 1): 283 − 287. (in Chinese)

    [15]

    Hosseinzadeh S A A, Tehranizadeh M. The wall-frame interaction effect in steel plate shear wall systems [J]. Journal of Constructional Steel Research, 2014, 98: 88 − 99. doi: 10.1016/j.jcsr.2014.02.013

    [16] 钱凤霞. 非加劲低屈服点钢板剪力墙结构受力行为研究 [D]. 北京: 北京交通大学, 2017.

    Qian Fengxia. Study on behavior of unstiffened low yeild point steel plate shear wall structure [D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)

    [17]

    Wang M, Borello D J, Fahnestock L A. Boundary frame contribution in coupled and uncoupled steel plate shear walls [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(14): 2355 − 2380.

    [18]

    Choi I R, Park H G. Steel plate shear walls with various infill plate designs [J]. Journal of Structural Engineering, 2009, 135(7): 785 − 796. doi: 10.1061/(ASCE)0733-9445(2009)135:7(785)

    [19]

    Li C H, Tsai K C, Chang J T, et al. Cyclic test of a coupled steel plate shear wall substructure [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(9): 1277 − 1299.

    [20] 王萌, 杨维国. 薄钢板剪力墙结构滞回行为研究[J]. 建筑结构学报, 2015, 36(1): 68 − 77.

    Wang Meng, Yang Weiguo. Hysteretic behaviors study of thin steel plate shear wall structures [J]. Journal of Building Structures, 2015, 36(1): 68 − 77. (in Chinese)

    [21] GB50011−2010,建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [22] 陈曦. 钢板剪力墙发展及展望[J]. 科学与财富, 2017(27): 4 − 5. doi: 10.3969/j.issn.1671-2226.2017.27.004

    Chen Xi. Development and prospect of steel plate shear wall [J]. Sciences & Wealth, 2017(27): 4 − 5. (in Chinese) doi: 10.3969/j.issn.1671-2226.2017.27.004

    [23] 陈云涛, 吕西林. 联肢剪力墙抗震性能研究——试验和理论分析[J]. 建筑结构学报, 2003, 24(4): 25 − 34. doi: 10.3321/j.issn:1000-6869.2003.04.004

    Chen Yuntao, Lü Xilin. Seismic behavior of coupled shear walls—experiment and theoretical analysis [J]. Journal of Building Structures, 2003, 24(4): 25 − 34. (in Chinese) doi: 10.3321/j.issn:1000-6869.2003.04.004

    [24] 伍云天, 李英民, 张祁, 等. 美国组合联肢剪力墙抗震设计方法探讨[J]. 建筑结构学报, 2011, 32(12): 137 − 144.

    Wu Yuntian, Li Yingmin, Zhang Qi, et al. Seismic design of hybrid coupled walls in United States [J]. Journal of Building Structures, 2011, 32(12): 137 − 144. (in Chinese)

    [25]

    EI-Tawil S, Fortney P J, Harries K A, et al. Seismic design of hybrid coupled wall systems: State of the art [J]. Journal of Structural Engineering, 2010, 136(7): 755 − 769. doi: 10.1061/(ASCE)ST.1943-541X.0000186

  • 期刊类型引用(28)

    1. 郑山锁,徐玉海,杨松,明铭,可亮. 近海大气环境下RC框架结构时变地震易损性分析. 自然灾害学报. 2024(01): 197-211 . 百度学术
    2. 贺少锋,邓宗才,李永梅. 高强钢筋超高性能混凝土框架结构易损性分析. 哈尔滨工程大学学报. 2024(03): 572-580 . 百度学术
    3. 周洲,于晓辉,韩淼,吕大刚,罗开海,王建宁. 震损钢筋混凝土框架结构余震韧性分析. 建筑结构学报. 2024(07): 143-152 . 百度学术
    4. 李帼昌,魏骊蓉,邱增美,刘旭. 高强钢管混凝土柱-铝合金屈曲约束支撑结构的地震易损性分析. 钢结构(中英文). 2024(07): 1-9 . 百度学术
    5. 赵真,郭红梅,张莹,尹文刚,鲁长江,范开红,张翼. 基于遥感初判的建筑物震害Fisher判别法研究. 地震工程学报. 2024(06): 1405-1414 . 百度学术
    6. 于晓辉,王勃,吕大刚. 基于分步调幅法的钢筋混凝土结构主余震易损性曲面分析. 建筑结构学报. 2023(05): 137-145 . 百度学术
    7. 羌鑫楠,范存新. 基于分布调幅法的钢框架结构主余震易损性分析. 苏州科技大学学报(工程技术版). 2023(03): 16-22+47 . 百度学术
    8. 林天成,陈灯红,刘云龙,贺路翔,潘子悦. 主余震作用下典型六层RC框架结构易损性分析. 防灾减灾工程学报. 2023(05): 1046-1056 . 百度学术
    9. 于晓辉,周洲,吕大刚. 钢筋混凝土框架结构的损伤状态相关余震易损性分析. 建筑结构学报. 2022(04): 8-16 . 百度学术
    10. 仲启迪,宋鸿誉,沈银良. 常用装配整体式框架结构服役期抗震性能研究. 建筑结构. 2022(07): 131-135 . 百度学术
    11. 孙晓静,杨锋,张海涛. 基于IDA的全钢管混凝土框架结构地震易损性研究. 结构工程师. 2021(01): 75-81 . 百度学术
    12. 李碧雄,王甜恬,赵开鹏,胡相鑫. 传统藏式民居的典型震害及易损性研究. 建筑结构学报. 2021(S1): 165-173 . 百度学术
    13. 韩建平,程诗焱,于晓辉,吕大刚. 地震动持时对RC框架结构易损性与抗震性能影响. 建筑结构学报. 2021(11): 116-127 . 百度学术
    14. 何乡,吴子燕,贾大卫. 考虑多维地震下的高耸塔台结构易损性分析. 自然灾害学报. 2021(06): 126-135 . 百度学术
    15. 郑山锁,汪靖,贺金川,刘晓航. 变电站主接线系统地震易损性分析. 华中科技大学学报(自然科学版). 2020(03): 98-103 . 百度学术
    16. 盛金喜,李慧民,马海聘. 基于易损性指数的SRC框架核心筒结构地震损伤评估. 世界地震工程. 2020(01): 101-108 . 百度学术
    17. 郝霖霏,前田匡樹,谭平,薛松涛. 基于性能冗余率的震损混凝土结构残余抗震性能评价. 建筑结构学报. 2020(08): 29-39 . 百度学术
    18. 黄敏. 混凝土框架结构施工技术在住宅建筑的抗震分析. 华南地震. 2020(03): 161-166 . 百度学术
    19. 金赟赟,李杰. 基于易损性贝叶斯网络的群体建筑快速震害预测. 自然灾害学报. 2020(05): 64-72 . 百度学术
    20. 马肖彤,陆华,何妍亭,马艳. 基于性能的钢筋混凝土框架剪力墙结构地震易损性分析. 地震工程学报. 2020(06): 1386-1390 . 百度学术
    21. 郑山锁,张睿明,陈飞,龙立,周炎,郑捷. 地震人员伤亡评估理论及应用研究. 世界地震工程. 2019(01): 87-96 . 百度学术
    22. 王飞剑,刘如山,马朝晖. 独立式窑洞在地震作用下损伤指标的分析. 科学技术与工程. 2018(15): 281-286 . 百度学术
    23. 郑山锁,张睿明,相泽辉,龙立,王斌,郑捷. 基于家庭决策的震后应急庇护物需求研究. 灾害学. 2018(04): 184-190 . 百度学术
    24. 白国良,王世振,成羽. 多类型地震动作用下高层结构的易损性分析. 防灾减灾工程学报. 2018(04): 669-676 . 百度学术
    25. 周洲,于晓辉,吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估. 工程力学. 2018(11): 134-145 . 本站查看
    26. 吴迪,熊焱. 基于试验的斜交网格-核心筒结构概率地震易损性分析. 工程力学. 2018(11): 155-161+171 . 本站查看
    27. 张桂欣,孙柏涛. 基于模糊层次分析的建筑物单体震害预测方法研究. 工程力学. 2018(12): 185-193+202 . 本站查看
    28. 谢贤鑫,张令心,曲哲. 基于修复性的砌体填充墙易损性研究. 建筑结构学报. 2018(12): 159-167 . 百度学术

    其他类型引用(50)

图(22)  /  表(1)
计量
  • 文章访问数:  679
  • HTML全文浏览量:  170
  • PDF下载量:  92
  • 被引次数: 78
出版历程
  • 收稿日期:  2019-10-30
  • 修回日期:  2020-02-27
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-09-06

目录

    /

    返回文章
    返回