基于NES的空间桁架结构被动减振研究

刘艮, 陈贡发

刘艮, 陈贡发. 基于NES的空间桁架结构被动减振研究[J]. 工程力学, 2020, 37(9): 63-73. DOI: 10.6052/j.issn.1000-4750.2019.10.0617
引用本文: 刘艮, 陈贡发. 基于NES的空间桁架结构被动减振研究[J]. 工程力学, 2020, 37(9): 63-73. DOI: 10.6052/j.issn.1000-4750.2019.10.0617
LIU Gen, CHEN Gong-fa. PASSIVE VIBRATION REDUCTION OF SPACE TRUSS STRUCTURES BASED ON NES[J]. Engineering Mechanics, 2020, 37(9): 63-73. DOI: 10.6052/j.issn.1000-4750.2019.10.0617
Citation: LIU Gen, CHEN Gong-fa. PASSIVE VIBRATION REDUCTION OF SPACE TRUSS STRUCTURES BASED ON NES[J]. Engineering Mechanics, 2020, 37(9): 63-73. DOI: 10.6052/j.issn.1000-4750.2019.10.0617

基于NES的空间桁架结构被动减振研究

基金项目: 国家科技部针对主动脉弓病变新一代覆膜支架的研发项目(2016YFE0117200)
详细信息
    作者简介:

    刘 艮 (1991−),女,湖北人,博士后,主要从事非线性动力学与控制研究 (E-mail: liugen1991@hotmail.com)

    通讯作者:

    陈贡发 (1964−),男,河南人,教授,博士,博导,主要从事计算结构力学研究 (E-mail: Gongfa.chen@gdut.edu.cn)

  • 中图分类号: TU311;P315.9

PASSIVE VIBRATION REDUCTION OF SPACE TRUSS STRUCTURES BASED ON NES

  • 摘要: 该文利用等效方法将由众多杆件构成的、离散的空间直线式桁架等效为连续梁,对等效梁附加NES(非线性能量阱)的桁架结构进行瞬态减振研究。通过等效方法将梁式桁架结构建模为等效线性连续系统(有限长度梁),并用有限元模型对其进行了验证。建立了含NES附件的等效悬臂梁的振动控制方程,并采用伽辽金法进行离散,分别分析了附加和不附加NES附件的梁在外激励下的横向振动位移响应。通过计算NES附件附着在结构的不同位置条件下的外激励响应,研究了NES对结构的振动抑制作用。此外,还研究了不同质量的NES附件在不同位置时结构的外激励响应,得到了NES附加质量对减振效果的影响。从结果可以看到,NES附件可以减弱X型桁架在瞬态激励作用下的响应,且当NES附件的质量增加时,系统的振动振幅下降更快,NES附件的能源消耗效率更高。同时还对比了NES被动减振和线性刚度阻尼减振器(TMD)的减振效果。结果表明,在附加NES的结构中,在激励发生后的5 s左右时,结构振幅的衰减就达到了可观的程度,振幅下降的趋势更为陡峭,体现了NES优于线性刚度阻尼减振的良好减振效果。并通过实验验证了不同质量的NES附件的衰减效果,在梁的自由端施加相同的位移激励幅值(15 mm),在此情况下,NES附件的质量越大,悬臂梁结构的瞬态响应衰减效率越高。实验结果与理论计算结果吻合较好。
    Abstract: The discrete linear spatial truss structure composed of many bar members is taken as a continuous beam by using an equivalent method. The transient vibration suppression of the truss structure is studied by adding nonlinear energy sinks (NES) to the equivalent beam. The lattice structure of the beam is modeled as an equivalent linear continuous system (finite length beam) by an equivalent method, which is verified by a finite element model. The vibration control equations of an equivalent cantilever beam with a NES attachment are established. The Galerkin method is adopted for discretization. The displacement responses of beams with and without a NES attachment under external excitation are analyzed. The vibration suppression effect of NES on the structure is studied by calculating the external excitation response of NES attachments at different positions in the structure. In addition, the external excitation response of NES attachments with different masses at different positions are also investigated. The effect of NES additional mass on the vibration reduction is obtained. The results show that the NES attachments can reduce the response efficiency of the x-truss under transient excitation When the mass of the NES attachments increases, the vibration amplitude of the system declines more rapidly and the energy consumption efficiency of the NES attachments becomes higher. The NES passive vibration reduction effect is compared with the linear stiffness damping damper (TMD). The results show that, in the structure with additional NES, the attenuation of the structure amplitude is appreciable at about 5 seconds after the excitation occurred, and the decline in the amplitude is steeper. This means that the NES passive reduction effect is much better than that of the linear stiffness damping damper (TMD). Additionally, the attenuation effect of the NES attachments with different qualities is verified through experiments, in which the same displacement excitation amplitude (15 mm) is applied to the free end of a beam. The results show that the greater the mass of the NES attachment is, the higher is the attenuation efficiency of the transient response of the cantilever structure. The experimental results are in good agreement with the theoretical calculation results.
  • 图  1   桁架结构附加NES附件的示意图

    Figure  1.   Schematic diagram of truss structure with NES attachment

    图  2   平面桁架结构的等效建模

    Figure  2.   Equivalent beam model of plane truss

    图  3   三种典型的平面桁架构型

    Figure  3.   Three classical plane truss configuration

    图  4   面内前2阶弯曲模态

    Figure  4.   First two in-plane bending modes

    图  5   桁架结构有限模型与等效梁模型固有频率的相对误差

    Figure  5.   Relative error of natural frequency between finite model of truss structure and equivalent beam model

    图  6   NES的位置

    Figure  6.   Location of NES

    图  8   NES的位置

    Figure  8.   Location of NES

    图  7   振幅衰减比率

    Figure  7.   Ratio of amplitude attenuation

    图  9   振幅衰减比率

    Figure  9.   Ratio of amplitude attenuation

    图  10   当NES附件选取不同质量时,结构的振动幅值衰减效果

    Figure  10.   Vibration amplitude attenuation effect of structure with NES’s of different masses

    图  11   选取不同的质量系数,系统振动幅值衰减为初始幅值25%时所用时间

    Figure  11.   With different mass coefficient, time taken by system when response amplitude is reduced to 25% of initial amplitude

    图  12   减振效果比较

    Figure  12.   Comparison of vibration reduction effects

    图  13   悬臂梁结构耦合NES附件振动实验简图

    Figure  13.   Experiment diagram of cantilever beam coupling NES attachment

    图  14   实验装置实物图

    Figure  14.   Experimental equipment

    图  15   非线性弹簧的刚度曲线

    Figure  15.   Stiffness curve of nonlinear spring

    图  16   不同NES附件质量时悬臂梁振动幅值的时域响应

    Figure  16.   Time-domain curve of transient response attenuation of structures with NES’s of different masses

    图  17   不同NES附件质量时悬臂梁振动幅值的时域响应包络线

    Figure  17.   Envelope of time-domain curves of transient response attenuation of structures with different masses

    表  1   桁架的几何属性

    Table  1   Geometric properties of truss

    杆件长/m截面外径/m截面内径/m数量
    横杆1.000.0090.00820
    竖杆1.000.0090.00811
    斜杆1.410.0090.00820
    下载: 导出CSV

    表  2   桁架的前两阶弯曲频率

    Table  2   First two bending frequencies of truss

    模态FEM模型等效模型
    一阶弯曲 /Hz 16.14 15.49
    二阶弯曲 /Hz 91.27 97.57
    下载: 导出CSV

    表  3   悬臂梁的基本参数

    Table  3   Physical parameters of cantilever beam

    长/mm宽/mm厚度/mm材料
    350271不锈钢
    下载: 导出CSV
  • [1]

    Timoshenko S P, Gere J M. Theory of elastic stability [M]. Tokyo: McGraw Hill-Kogakusha Ltd, 1961.

    [2]

    Nayfeh A H, Hefzy M S. Continuum modeling of three-dimensional truss-like space structures [J]. AIAA Journal, 1978, 16: 779 − 787. doi: 10.2514/3.7581

    [3]

    Nayfeh A H, Hefzy M S. Effective constitutive relations for large repetitive frame-like structures [J]. International Journal of Solids and Structures, 1982, 18: 975 − 987. doi: 10.1016/0020-7683(82)90087-7

    [4]

    Sun C T, Kim B J. Continuum modeling of periodic truss structures [J]. Damage Mechanics and Continuum Modeling, ASCE, 1985: 57 − 71.

    [5]

    Noor A K, Mikulas M M. Continuum modeling of large lattice structures: Status and projections [J]. Large Space Structures: Dynamics and Control, 1988: 1 − 34. DOI: 10.1007/978-3-642-83376-2_1

    [6]

    Lee U. Equivalent continuum models of large platelike lattice structures [J]. International Journal of Solids and Structures, 1994, 31: 457 − 467. doi: 10.1016/0020-7683(94)90086-8

    [7]

    Burgardt B, Cartraud P. Continuum modeling of beamlike lattice trusses using averaging methods [J]. Computers and Structures, 1999, 73: 67 − 279.

    [8]

    Odegard G M, Gates T S, Nicholson L M, et al. Equivalent-continuum modeling of nano-structured materials [J]. Composites Science and Technology, 2002, 62: 1869 − 1880. doi: 10.1016/S0266-3538(02)00113-6

    [9]

    Fan H L, Yang W. An equivalent continuum method of lattice structures [J]. Acta Mechanica Solida Sinica, 2006, 19: 103 − 113. doi: 10.1007/s10338-006-0612-x

    [10]

    Salehian A, Inman D J. Dynamic analysis of a lattice structure by homogenization: Experimental validation [J]. Journal of Sound and Vibration, 2008, 316: 180 − 197. doi: 10.1016/j.jsv.2008.02.031

    [11]

    Salehian A, Inman D J. Micropolar continuous modeling and frequency response validation of a lattice structure [J]. Journal of Vibration and Acoustics, 2010, 132: 011010.

    [12]

    Liu F, Jin D, Wen H. Equivalent dynamic model for hoop truss structure composed of planar repeating elements [J]. AIAA Journal, 2017, 55: 1 − 6.

    [13]

    Tollenaere H, Caillerie D. Continuous modeling of lattice structures by homogenization [J]. Advances in Engineering Software, 1998, 29: 699 − 705. doi: 10.1016/S0965-9978(98)00034-9

    [14]

    Gendelman V. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators [J]. Nonlinear dynamics, 2001, 25: 237 − 253. doi: 10.1023/A:1012967003477

    [15]

    Gourdon F, Lamarque C H, Pernot S. Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment [J]. Nonlinear dynamics, 2007, 50: 493 − 808.

    [16]

    Farid M, Levy V, Gendelman O V. Vibration mitigation in partially liquid-filled vessel using passive energy absorbers [J]. Journal of Sound and Vibration, 2017, 406: 51 − 73. doi: 10.1016/j.jsv.2017.06.013

    [17]

    Fang Z W, Zhang W, Li X. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester [J]. Journal of Sound and Vibration, 2017, 391: 35 − 49. doi: 10.1016/j.jsv.2016.12.019

    [18]

    Al-Shudeifat M A, Wierschem N E, Bergman L A. Numerical and experimental investigations of a rotating nonlinear energy sink [J]. Meccanica, 2017, 52: 763 − 779. doi: 10.1007/s11012-016-0422-2

    [19]

    Mamaghani A E, Khadem S E, Bab S. Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment [J]. International Journal of Mechanical Sciences, 2018, 138: 427 − 447.

    [20]

    Hill T, Cammarano A, Neild S A. Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves [J]. Journal of Sound and Vibration, 2015, 349: 276 − 288. doi: 10.1016/j.jsv.2015.03.030

    [21]

    Kai Y, Zhang Y W, Hu D. The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions [J]. Communications in Nonlinear Science & Numerical Simulation, 2017, 44: 184 − 192.

    [22]

    Zang J, Chen L Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink [J]. Acta Mechanica Sinica, 2017, 33(4): 1 − 22.

    [23]

    Chen J E, Zhang W, Yao M H, et al. Vibration reduction in truss core sandwich plate with internal nonlinear energy sink [J]. Composite Structures, 2018, 193: 180 − 188. doi: 10.1016/j.compstruct.2018.03.048

    [24]

    Chen J E, He W, Zhang W, et al. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks [J]. Nonlinear Dynamics, 2018, 91: 885 − 904. doi: 10.1007/s11071-017-3917-z

    [25] 刘良坤, 谭平, 闫维明, 等. 一种 NES 与 TMD 的混合控制方案研究[J]. 工程力学, 2017, 34(9): 64 − 72, 82.

    Liu Liangkun, Tan Ping, Yan Weiming, et al. Analysis of a hybrid scheme comprised of nonlinear energy sink and tuned mass damper [J]. Engineering Mechanics, 2017, 34(9): 64 − 72, 82. (in Chinese)

    [26] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149 − 158.

    Chen Yangyang, Chen Kai, Tan Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness [J]. Engineering Mechanics, 2019, 36(3): 149 − 158. (in Chinese)

  • 期刊类型引用(3)

    1. 王宇,严鹏志,范鹏贤. 低速冲击条件下散体颗粒消波变形特性试验研究. 陆军工程大学学报. 2024(02): 80-87 . 百度学术
    2. 周辉,任辉启,吴祥云,易治,黄魁,穆朝民,王海露. 成层式防护结构中分散层研究综述. 爆炸与冲击. 2022(11): 3-28 . 百度学术
    3. 陈有雄,徐连财,弥鸿嘉,蔡厦苗. 泡沫沥青温拌再生技术的污染防控研究. 环境科学与管理. 2020(04): 181-185 . 百度学术

    其他类型引用(1)

图(17)  /  表(3)
计量
  • 文章访问数:  745
  • HTML全文浏览量:  344
  • PDF下载量:  93
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2020-04-20
  • 网络出版日期:  2020-05-24
  • 刊出日期:  2020-09-06

目录

    /

    返回文章
    返回