多分裂导线扭矩-扭转角关系及防翻转研究

TORQUE AND ROTATION ANGLE RELATIONSHIP AND ANTI-TWISTING RESEARCH OF MULTI-BUNDLED CONDUCTORS

  • 摘要: 提出一种新的多分裂导线扭矩-扭转角关系半解析模型,适用于大档距大扭转角以及翻转计算。该模型考虑间隔棒的竖向及水平向位移、子导线在扭转过程中的张力变化等多重因素,同时考虑分裂导线各截面的扭转角沿跨长呈非线性分布的特征。计算结果与有限元方法、试验结果进行了对比验证,表明导线的几何非线性对导线回复扭矩的影响十分显著,该文提出的半解析模型在小角度和大角度扭转情况下均具有较高的计算精度,并为判定导线是否翻转提供依据。详细分析了布置不同间隔棒数量工况下的扭矩-扭转角关系,从而考察了增加间隔棒数量对抑制翻转的有效性,发现只需少量增加间隔棒就能保证即使扭转角达到180°时扭转刚度依然为正,即可自行恢复,有效预防翻转;对于扭矩非常大的情形,若要保证扭转360°时扭转刚度依然为正,即导线出现扭绞现象后仍具备自行回复原位的能力,则需要布置较多的间隔棒。

     

    Abstract: A new semi-analytical model of torque and rotational angle relationship for multi-bundled conductors is proposed. It is suitable for the calculation of large-span large-rotational angles and twisting scenarios. The model considers the vertical and horizontal displacement of the spacer and the tension variation of the sub-wire during the torsion process. It also considers the nonlinear distribution of the rotational angle along the span length. The calculation results are compared with the finite element method and experimental results which show that the geometric nonlinearity of multi-bundled conductors has a significant effect on the recovery torque. The semi-analytical model has a high calculation accuracy in both small and large rotational angle scenarios and can provide a basis for determining whether the conductors are twisted. The relationship between T-θ curves and the number of spacers is analyzed in detail to investigate the effectiveness of increasing the number of spacers in suppressing the twisting. It is found that only a small increase in the number of spacers can ensure the safety by the fact that the stiffness remains positive and the conductor can be restored by itself even if it is twisted by 180°. For the case of extremely large torque, more spacers are needed to maintain a positive torsional stiffness when it is twisted by 360°, which means that the conductor still has the ability to restore after twisting occurs.

     

/

返回文章
返回