DESIGN, PERFORMANCE TEST AND STRUCTURAL WIND VIBRATION CONTROL ANALYSIS OF MULTI-STAGE VARIABLE DAMPING DEVICE
-
摘要: 针对粘滞阻尼器出力范围窄,磁流变等变阻尼装置需能量输入和反馈控制的局限性,在前期单阶梯被动变阻尼装置研制基础上,设计制作了一种多阶梯被动变阻尼耗能装置(Multi-stage Passive Variable Damping Device,MPVDD),该装置采用被动控制方式,在不同速度区间拥有不同的阻尼系数变化规律。对其进行了相关性能验证试验和基于该装置结构风振控制效果的数值计算,试验和分析表明:装置可根据外部激励速度变化,实时机械式改变阻尼系数,实现宽域值变阻尼力的输出,且不需外部能源供给和状态反馈;安装耗能装置高层结构风振下的加速度和位移响应均得到有效控制,保证了风载下结构的舒适性和安全性要求。所做研究为该装置的应用打下了良好的试验和理论基础。Abstract: In view of the narrow output range of viscous damper and the limitation of magnetorheological variable damping device requiring energy input and feedback control, based on the previous development of single-step passive variable damping device, a Multi-stage Passive Variable Damping Device (MPVDD) is designed and manufactured. MPVDD has different variable damping laws in different velocity ranges by passive control. Performance tests and the numerical analysis of wind-induced vibration control of MPVDD are carried out. The test and analysis show that the device can change the damping coefficient in real time according to the change of external excitation speed and realize the output of wide-range variable damping force without external energy supply and state feedback. The acceleration and displacement response of the high-rise structure under wind vibration can be effectively controlled to ensure the comfort and safety requirements of the structure under wind load. The results have laid an excellent experimental and theoretical foundation for the application of MPVDD.
-
-
[1] Soong T T, Costantinou M C. Passive and active structural vibration control in civil engineering[M]. New York:Springer, 1994.
[2] Spencer B F. State of the art of structural control[J]. Journal of Structural Engineering, 2003, 129(7):845-856.
[3] 曲激婷, 李宏男, 李钢. 位移型消能器在结构减震控制中的位置优化研究[J]. 工程力学, 2009, 26(1):43-48. Qu Jiting, Li Hongnan, Li Gang. Optimal placement of displacement-based energy dissipative devices for passive response control[J]. Engineering Mechanics, 2009, 26(1):43-48. (in Chinese)
[4] 李斌, 文昊天, 宫兆宇. 风力发电机塔筒风致响应分析与风振控制研究[J]. 工程力学, 2017, 34(增刊):134-138. Li Bin, Wen Haotian, Gong Zhaoyu. Wind-induced response analysis and wind vibration control of a wind turbine tower drum[J]. Engineering Mechanics, 2017 , 34(Suppl):134-138. (in Chinese)
[5] 陈斯聪, 周云, 商城豪. 基于黏滞阻尼器耗散功率的超高层结构风振设计方法[J]. 建筑结构, 2017, 47(8):69-75. Chen Sicong, Zhou Yun, Shang Chenghao. Wind-induced vibration design method of super high-rise structures based on dissipative power of viscous dampers[J]. Building Structure, 2017, 47(8):69-75. (in Chinese)
[6] Mcnamara R J, Taylor D P. Fluid viscous dampers for high-rise buildings[J]. Structural Design of Tall and Special Buildings, 2003, 12(2):145-154.
[7] Chen J, Zeng X, Peng Y. Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers[J]. Journal of Sound and Vibration, 2017, 409:287-305.
[8] 付伟庆, 李茂, 张春巍, 等. 基于被动变阻尼装置高层结构风振控制效果对比分析[J]. 地震工程与工程振动, 2019, 39(5):95-103. Fu Weiqing, Li Mao, Zhang Chunwei, et al. Wind vibration control comparative analysis of passive variable damping device in high-rise buildings[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(5):95-103. (in Chinese)
[9] 张军锋, 朱冰, 杨军辉, 等. 结构基频对冷却塔风振效应的影响[J]. 工程力学, 2019, 36(3):131-138 , 202. Zhang Junfeng, Zhu Bing, Yang Junhui, et al. Influences of the fundamental frequency on the wind dynamic effects of a hyperbolic cooling tower[J]. Engineering Mechanics, 2019, 36(3):131-138, 202. (in Chinese)
[10] 彭程, 马良喆, 陈永祁. 液体黏滞阻尼器在超高层结构上的抗风效果分析[J]. 建筑结构, 2015, 45(2):80-88. Peng Cheng, Ma Liangzhe, Chen Yongqi. Wind vibration control analysis of fluid viscous dampers in super high-rise buildings[J]. Building Structure, 2015, 45(2):80-88. (in Chinese)
[11] Aly A M. Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers[J]. Wind and Structures, 2015, 21(5):565-595.
[12] Zhu W Q, Luo M, Dong L. Semi-active control of wind excited building structures using MR/ER dampers[J]. Probabilistic Engineering Mechanics, 2004, 19(3):279-285.
[13] 丁阳, 张路, 李忠献. 阻尼力双向调节磁流变阻尼器的结构设计与性能预估[J]. 工程力学, 2009, 26(5):73-79. Ding Yang, Zhang Lu, Li Zhongxian. Structural design and performance prediction of MR damper with bidirectional adjusting damping force[J]. Engineering Mechanics, 2009, 26(5):73-79. (in Chinese)
[14] 周云, 吴志远, 梁兴文. 磁流变阻尼器对高层建筑风振反应的半主动控制[J]. 地震工程与工程振动, 2001, 21(4):159-162. Zhou Yun, Wu Zhiyuan, Liang Xingwen. Semi-active control for wind-induced vibration of high-rise structure using MR damper[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(4):159-162. (in Chinese)
[15] Ikago K, Saito K, Inoue N. Seismic control of singledegree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3):453-474.
[16] Weber F, Boston C, Maślanka M. An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper[J]. Smart Materials and Structures, 2010, 20(1):015012. doi: 10.1088/0964-1726/20/1/015012
[17] Varadarajan N, Nagarajaiah S. Wind response control of building with variable stiffness tuned mass damper using empirical mode decomposition/Hilbert transform[J]. Journal of Engineering Mechanics, 2004, 130(4):451-458.
[18] 国巍, 李宏男, 柳国环. 共享调谐质量阻尼器(STMD)在附属结构减震中的应用[J]. 工程力学, 2009, 26(5):202-208. Guo Wei, Li Hongnan, Liu Guohuan. Shared mass damper (STMD) used to reduce the seismic response of secondary systems[J]. Engineering Mechanics, 2009, 26(5):202-208. (in Chinese)
[19] 欧进萍, 王永富. 设置TMD,TLD控制系统的高层建筑风振分析与设计方法[J]. 地震工程与工程振动, 1994(2):61-75. Ou Jinping, Wang Yongfu. Wind induced vibration analyses and design methods of tall buildings with tuned mass dampers or tuned liquid dampers[J]. Earthquake Engineering and Engineering Vibration, 1994 (2):61-75. (in Chinese)
[20] 田英鹏, 徐丹, 周惠蒙, 等. 对风力发电机塔架施工阶段TMD阻尼器的研究[J]. 工程力学, 2019, 36(增刊):184-188. Tian Yingpeng, Xu Dan, Zhou Huimeng, et al. Study on the TMD damping of wind turbine towers in construction[J]. Engineering Mechanics, 2019 , 36(Suppl):184-188. (in Chinese)
[21] Sarkar S, Fitzgerald B. Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter[J]. Structural Control and Health Monitoring, 2020, 27(1):e2471. doi: 10.1002/stc.2471
[22] 丁建华, 欧进萍. 油缸孔隙式粘滞阻尼器理论与性能试验[J]. 世界地震工程, 2001, 17(1):30-35. Ding Jianhua, Ou Jinping. Theoretical study and performance experiment for cylinder-with holes viscous damper[J]. World Information on Earthquake Engineering, 2001, 17(1):30-35. (in Chinese)
-
期刊类型引用(4)
1. 李铮,付伟庆,王浩哲. 基于被动变阻尼变刚度装置组合隔震新体系性能化设计方法. 地震工程与工程振动. 2024(03): 127-135 . 百度学术
2. 台玉吉,黄智文,严爱国,华旭刚,陈政清. 一种曲柄连杆式惯容器的力学性能与隔震性能研究. 工程力学. 2024(08): 36-46 . 本站查看
3. 阮子悦,邢海军,卢学礼. 分段阻尼隔振系统的动力学特性分析. 动力学与控制学报. 2023(05): 44-52 . 百度学术
4. 付伟庆,李茂,李通,张春巍. 多阶梯被动变阻尼装置高层建筑风振控制性能化设计方法. 地震工程与工程振动. 2021(05): 47-55 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 535
- HTML全文浏览量: 76
- PDF下载量: 75
- 被引次数: 7