考虑柱纵向钢筋屈曲特征的修正材料本构模型

杨红, 耿南锋, 刘子珅

杨红, 耿南锋, 刘子珅. 考虑柱纵向钢筋屈曲特征的修正材料本构模型[J]. 工程力学, 2020, 37(6): 174-185. DOI: 10.6052/j.issn.1000-4750.2019.08.0465
引用本文: 杨红, 耿南锋, 刘子珅. 考虑柱纵向钢筋屈曲特征的修正材料本构模型[J]. 工程力学, 2020, 37(6): 174-185. DOI: 10.6052/j.issn.1000-4750.2019.08.0465
YANG Hong, GENG Nan-feng, LIU Zi-shen. A MODIFIED CONSTITUTIVE MODEL CONSIDERING THE BUCKLING BEHAVIOR OF LONGITUDINAL REINFORCEMENT IN RC COLUMNS[J]. Engineering Mechanics, 2020, 37(6): 174-185. DOI: 10.6052/j.issn.1000-4750.2019.08.0465
Citation: YANG Hong, GENG Nan-feng, LIU Zi-shen. A MODIFIED CONSTITUTIVE MODEL CONSIDERING THE BUCKLING BEHAVIOR OF LONGITUDINAL REINFORCEMENT IN RC COLUMNS[J]. Engineering Mechanics, 2020, 37(6): 174-185. DOI: 10.6052/j.issn.1000-4750.2019.08.0465

考虑柱纵向钢筋屈曲特征的修正材料本构模型

基金项目: 

国家自然科学基金项目(51878100)

详细信息
    作者简介:

    杨红: 耿南峰(1994-),男,河南人,硕士生,主要从事钢筋混凝土结构受力性能研究(E-mail:2373768263@qq.com);刘子珅(1992-),女,辽宁人,硕士,主要从事钢筋混凝土结构受力性能研究(E-mail:84769181@qq.com).

  • 中图分类号: TU317

A MODIFIED CONSTITUTIVE MODEL CONSIDERING THE BUCKLING BEHAVIOR OF LONGITUDINAL REINFORCEMENT IN RC COLUMNS

  • 摘要: 纵筋屈曲会加速钢筋混凝土(RC)柱峰值后承载力退化,在钢筋的材料本构关系中合理地考虑屈曲效应是RC柱的有限元模型可信的基础之一。Gomes等提出的屈曲钢筋材料本构模型(G-A模型)力学概念清楚,但两个基本假定存在明显误差。在OpenSees平台上,采用基于纤维截面的集中塑性铰非线性梁柱单元对24个钢筋试件的屈曲受力性能循环加载试验进行模拟。基于有限元计算结果,对G-A模型采用的全截面塑性弯矩Mp、忽略杆件轴向变形的几何关系进行了误差分析。通过回归分析,建立了修正G-A模型。研究结果表明,屈曲钢筋试件关键截面的应力分布与G-A模型的全截面塑性基本假定差别较大,忽略轴向变形影响会导致屈曲钢筋跨中侧向位移计算结果存在误差。原始G-A模型的模拟效果较差,修正G-A模型对全截面塑性弯矩、几何关系均进行改进,其计算精度明显提高。
    Abstract: The buckling of longitudinal steel bars always accelerates the deterioration of post-peak strength capacity of reinforced concrete (RC) columns. The reliability of the finite element model of RC columns depends on reasonably considering the effect of buckling in the constitutive relationship of bars. The constitutive model of buckled bars proposed by Gomes et al. (G-A model) has explicit physical meaning. However, obvious errors exist in the two basic assumptions. Finite element calculation of cyclic loading tests on the buckling behavior of 24 steel bar specimens was carried out on the OpenSees platform by using fiber section-based plastic hinge nonlinear beam-column elements. Based on the results of the finite element analysis, the errors of the two basic assumptions in the G-A model are analyzed, namely the plastic bending moment Mp and the geometric relationship of ignoring the axial deformation of the member. A modified G-A model is established on the basis of the regression analysis. The results show that the stress distribution on the critical section of a buckled bar is quite different from the plastic bending moment assumption adopted in the G-A model. The errors in calculating the mid-span lateral displacement of buckled bars were introduced by ignoring the axial deformation. The simulation results of the G-A model is less effective. The modified G-A model corrects the plastic bending moment and geometric relationship, and the calculation accuracy isobviously improved.
  • [1]

    Pantazopoulou S J. Detailing for reinforcement stability in RC members[J]. Journal of Structural Engineering, ASCE, 1998, 124(6):623-632.

    [2]

    Moyer M J, Kowalsky M J. Influence of tension strain on buckling of reinforcement in concrete columns[J]. ACI Structural Journal, 2003, 100(1):75-85.

    [3]

    Sato Y C, Ko H B. Experimental investigation of conditions of lateral shear reinforcements in RC columns accompanied by buckling of longitudinal bars[J]. Earthquake Engineering Structural Dynamics, 2007, 36(12):1685-1699.

    [4] 杨红, 张洛, 张和平. 考虑纵筋屈曲及疲劳损伤的钢筋混凝土柱抗震性能试验与非线性分析[J]. 建筑结构学报, 2013, 34(11):130-140.

    Yang Hong, Zhang Luo, Zhang Heping. Experiments and nonlinear analysis on seismic behavior of RC columns considering buckling and fatigue damage of reinforcing steel bar[J]. Journal of Building Structures, 2013, 34(11):130-140. (in Chinese)

    [5]

    Bayrak O, Sheikh S A. Plastic hinge analysis[J]. Journal of Structural Engineering, ASCE, 2001, 127(9):1092-1100.

    [6]

    Su Junsheng, Wang Junjie, Bai Zhizhou, et al. Influence of reinforcement buckling on the seismic performance of reinforced concrete columns[J]. Engineering Structures, 2015, 103:174-188.

    [7]

    Monti G, Nuti C. Nonlinear cyclic behavior of reinforcing bars including buckling[J]. Journal of Structural Engineering, ASCE, 1992, 118(12):3268-3284.

    [8]

    Rodriguez M E, Botero J C, Villa J. Cyclic stressstrain behavior of reinforcing steel including effect of buckling[J]. Journal of Structural Engineering, ASCE, 1999, 125(6):605-612.

    [9]

    Bae S, Mieses A M, Bayrak O. Inelastic buckling of reinforcing bars[J]. Journal of Structural Engineering, ASCE, 2005, 131(2):314-321.

    [10]

    Kashani M M, Crewe A J, Alexander N A. Nonlinear cyclic response of corrosion damaged reinforcing bar with the effect of buckling[J]. Construction and Building Materials, 2013, 41:388-400.

    [11]

    Dhakal R P, Maekawa K. Modeling of postyield buckling of reinforcement[J]. Journal of Structural Engineering, ASCE, 2002, 128(9):1139-1147.

    [12]

    Zong Z Y, Kunnath S, Monti G. Simulation of reinforcing bar buckling in circular reinforced concrete columns[J]. ACI Structural Journal, 2013, 110(4):607-616.

    [13]

    Gomes A, Appleton J. Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling[J]. Engineering Structures, 1997, 19(10):822-826.

    [14]

    Akkaya Y, Guner S, Vecchio, F J. Constitutive model for inelastic buckling behavior of reinforcing bars[J]. ACI Structural Journal, 2019, 116(3):195-204.

    [16]

    Kunnath S K, Heo Y A, Mohle J F. Nonlinear uniaxial material model for reinforcing steel bars[J]. Journal of Structural Engineering, ASCE, 2009, 135(4):335-343.

    [17] 杨红, 谢琴, 张吉庆, 等. 考虑屈曲影响的钢筋本构修正模型及试验验证[J]. 土木工程学报, 2015, 48(10):21-29.

    Yang Hong, Xie Qin, Zhang Jiqing, et al. A modified constitutive model of reinforcing bars considering buckling effects and its experimental verification[J]. China Civil Engineering Journal, 2015, 48(10):21-29. (in Chinese)

    [18]

    Yang Hong, Wu Yuntian, Mo Pengchen, et al. Improved nonlinear cyclic stress-strain model for reinforcing bars including buckling effect and experimental verification[J]. International Journal of Structural Stability and Dynamics, 2016, 16(1):164005-1-164005-16.

    [19]

    Urmson C R, Mander J B. Local buckling analysis of longitudinal reinforcing bars[J]. Journal of Structural Engineering, ASCE, 2012, 138(1):62-71.

    [20] 刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2):35-140.

    Liu Zishen, Yang Hong, Zhang Jiqing. Research on buckling state determination of reinforcing bars based on lateral deflection[J]. Engineering Mechanics, 2018, 35(2):35-140. (in Chinese)

    [21] 邢国华, 杨成雨, 常召群, 等. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8):87-95.

    Xing Guohua, Yang Chengyu, Chang Zhaoqun, et al. Study on modified axial-shear-flexure interaction model for corroded reinforced concrete columns[J]. Engineering Mechanics, 2019, 36(8):87-95. (in Chinese)

    [22]

    Massone L M, Moroder D. Buckling modeling of reinforcing bars with imperfections[J]. Engineering Structures, 2009, 31(3):758-767.

    [23]

    Scott M H, Fenves G L. Plastic hinge integration methods for force-based beam-column elements[J]. Journal of Structural Engineering, ASCE, 2006, 132(2):244-252.

  • 期刊类型引用(12)

    1. 武祥. 施工缝对混凝土框架结构抗震性能影响研究. 江西建材. 2023(11): 339-340+345 . 百度学术
    2. 李檀,周乐. GFRP管钢骨高强混凝土轴心受压柱力学性能有限元分析. 沈阳大学学报(自然科学版). 2022(03): 221-226 . 百度学术
    3. 曹大富,张鑫,陆一航,王琨,李琮琦,刘强,韩志先. 桁架式钢骨混凝土门式框架抗震性能研究. 建筑结构学报. 2021(08): 36-48 . 百度学术
    4. 王琨,查志远,刘宏潮,陈再现. 预应力型钢混凝土梁-钢管混凝土叠合柱框架中节点受剪性能分析. 工程力学. 2020(08): 89-101 . 本站查看
    5. 刘宏潮,顾明君,顾钊,胡鹏飞. 钢管混凝土叠合柱结构研究综述. 江苏建筑. 2018(02): 54-56 . 百度学术
    6. 周俊,罗辉辉,胡鹏飞. 套建增层预应力钢骨混凝土框架结构研究. 山西建筑. 2018(11): 33-34 . 百度学术
    7. 胡鹏飞,罗辉辉. 钢管混凝土核心柱节点有限元模拟. 山西建筑. 2018(11): 41-43 . 百度学术
    8. 胡鹏飞,罗辉辉,陈琪琪. 型钢混凝土组合结构研究进展. 山西建筑. 2018(13): 41-42 . 百度学术
    9. 林拥军,林池锬,张晶. 圆钢管钢骨混凝土柱的承载力参数分析. 钢结构. 2018(10): 40-46+58 . 百度学术
    10. 翟建恺,孙一天. 型钢活性粉末混凝土组合结构研究综述. 山西建筑. 2018(28): 47-49 . 百度学术
    11. 王琨,智海祥,曹大富,史高林. 预应力型钢混凝土梁-钢管混凝土叠合柱框架节点抗震性能试验研究. 建筑结构学报. 2018(12): 29-38 . 百度学术
    12. 郭楷,刘路,徐远飞. 不同筒仓结构类型的分析和比较. 建筑技术开发. 2018(21): 9-10 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  467
  • HTML全文浏览量:  71
  • PDF下载量:  91
  • 被引次数: 14
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-11-14
  • 刊出日期:  2020-06-13

目录

    /

    返回文章
    返回