考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证

汪炳, 黄侨, 刘小玲

汪炳, 黄侨, 刘小玲. 考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证[J]. 工程力学, 2020, 37(6): 140-147. DOI: 10.6052/j.issn.1000-4750.2019.08.0434
引用本文: 汪炳, 黄侨, 刘小玲. 考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证[J]. 工程力学, 2020, 37(6): 140-147. DOI: 10.6052/j.issn.1000-4750.2019.08.0434
WANG Bing, HUANG Qiao, LIU Xiao-ling. CALCULATION METHOD AND EXPERIMENTAL VERIFICATION OF THE RESIDUAL STRENGTH OF COMPOSITE BEAMS CONSIDERING THE FATIGUE DAMAGE OF MULTI-COMPONENTS[J]. Engineering Mechanics, 2020, 37(6): 140-147. DOI: 10.6052/j.issn.1000-4750.2019.08.0434
Citation: WANG Bing, HUANG Qiao, LIU Xiao-ling. CALCULATION METHOD AND EXPERIMENTAL VERIFICATION OF THE RESIDUAL STRENGTH OF COMPOSITE BEAMS CONSIDERING THE FATIGUE DAMAGE OF MULTI-COMPONENTS[J]. Engineering Mechanics, 2020, 37(6): 140-147. DOI: 10.6052/j.issn.1000-4750.2019.08.0434

考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证

基金项目: 

国家自然科学基金项目(51808301);浙江省自然科学基金项目(LQ19E080006,LY19A020003)

详细信息
    作者简介:

    汪炳: 黄侨(1958-),男,上海人,教授,博士,博导,主要从事钢-混凝土组合桥梁设计理论研究(E-mail:qhuanghit@126.com);刘小玲(1988-),女,江苏人,讲师,博士,主要从事大跨斜拉桥养护与管理研究(E-mail:liuxiaolingseu@163.com).

  • 中图分类号: U441

CALCULATION METHOD AND EXPERIMENTAL VERIFICATION OF THE RESIDUAL STRENGTH OF COMPOSITE BEAMS CONSIDERING THE FATIGUE DAMAGE OF MULTI-COMPONENTS

  • 摘要: 针对现行规范中无法计算钢-混凝土组合梁在疲劳后的剩余承载力问题,提出考虑多组件疲劳损伤的组合梁剩余承载力的计算方法。基于材料剩余强度理论,分别引入组合梁各组件(混凝土板、钢梁和栓钉连接件)在疲劳荷载作用下的强度衰减模型;对疲劳荷载作用下的组合梁进行受力分析,得到在既定疲劳荷载幅值下各组件的疲劳应力幅;将各组件的疲劳损伤计入钢-混凝土组合梁剩余抗弯承载力计算中,并考虑疲劳加载过程中组合梁抗剪连接度的变化,建立完全抗剪连接和部分抗剪连接两种情形下的组合梁剩余承载力计算方法,并通过6个试验梁的剩余承载力试验进行验证。研究结果表明:在疲劳荷载作用下,组合梁的抗剪连接度逐渐降低,剩余承载力退化明显且不可忽略。该文建立的组合梁剩余承载力计算方法的计算值与试验值吻合较好,具有良好的计算精度与适用性,补充并完善了现有组合梁承载力的计算方法。
    Abstract: In view of the problem that the residual strength of steel-concrete composite beams after fatigue cannot be calculated in the current codes, a method for calculating the residual strength of composite beams considering multi-component fatigue damage is proposed. Based on the material residual strength theory, the component strength attenuation models of the concrete slab, steel beam and stud connector in a composite beam under fatigue load were introduced. The fatigue stress amplitude of each component under the given fatigue load was then obtained by the stress analysis of the composite beam under fatigue load. The fatigue damage of each component was included in the calculation of the residual strength of steel-concrete composite beams. Considering the change of the shear connection degree of composite beams during fatigue loading, the calculation methods of the residual strength of composite beams under complete and partial shear connections were established and verified through the test of the residual strength of six beams. The results show that the shear connection degree of composite beams decreases gradually under fatigue load, and that the residual strength degradation is obvious and cannot be neglected. The calculation results of the residual strength of composite beams by the method established in this paper are in good agreement with the experimental values. The method has good calculation accuracy and applicability. It complements and improves the existing calculation methods of composite beams.
  • [1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6):100-122.

    Nie Jianguo, Tao Muxuan, Wu Lili, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6):100-122. (in Chinese)

    [2] 朱经纬, 王春生, 翟晓亮. 圆管翼缘钢-混凝土新型组合梁负弯矩区力学性能试验研究[J]. 工程力学, 2018, 35(12):124-133.

    Zhu Jingwei, Wang Chunsheng, Zhai Xiaoliang. Experimental research on the mechanical properties of steel and concrete composite girders with circle tubular up-flange under negative bending[J]. Engineering Mechanics, 2018, 35(12):124-133. (in Chinese)

    [3] 张建春, 张大山, 董毓利, 等. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6):183-192

    , 210. Zhang Jianchun, Zhang Dashan, Dong Yuli, et al. Experimental study on internal force variation of steel-concrete composite beam under fire[J]. Engineering Mechanics, 2019, 36(6):183-192, 210. (in Chinese)

    [4]

    Deng W, Xiong Y, Liu D, et al. Static and fatigue behavior of shear connectors for a steel-concrete composite girder[J]. Journal of Constructional Steel Research, 2019, 159:134-146.

    [5]

    Han Q H, Wang Y H, Xu J, et al. Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams[J]. Steel and Composite Structures, 2016, 22(2):353-368.

    [6]

    Song A, Wan S, Jiang Z, et al. Residual deflection analysis in negative moment regions of steel-concrete composite beams under fatigue loading[J]. Construction and Building Materials, 2018, 158:50-60.

    [7]

    El-Zohairy A, Salim H, Saucier A. Fatigue tests on steel-concrete composite beams subjected to sagging moments[J]. Journal of Structural Engineering, 2019, 145(5):04019029.

    [8] 李小珍, 谭清泉, 肖林. 钢-混凝土组合梁疲劳性能试验研究[J]. 桥梁建设, 2017, 47(6):12-17.

    Li Xiaozhen, Tan Qingquan, Xiao Lin. Experimental study of fatigue behavior of steel and concrete composite beams[J]. Bridge Construction, 2017, 47(6):12-17. (in Chinese)

    [9] 刘小洁, 李亚平, 刘亚茹, 等. 钢-混凝土组合箱梁的抗弯疲劳性能试验研究[J]. 铁道科学与工程学报, 2015, 12(5):1123-1129.

    Liu Xiaojie, Li Yaping, Liu Yaru, et al. Experimental research on fatigue behavior of steel-concrete composite box girder[J]. Journal of Railway Science and Engineering, 2015, 12(5):1123-1129. (in Chinese)

    [10]

    Xu C, Sugiura K, Su Q. Fatigue behavior of the group stud shear connectors in steel-concrete composite bridges[J]. Journal of Bridge Engineering, 2018, 23(8):04018055.

    [11]

    Wang B, Huang Q, Liu X. Comparison of static and fatigue behaviors between stud and perfobond shear connectors[J]. KSCE Journal of Civil Engineering, 2019, 23(1):217-227.

    [12] 刘诚, 樊健生, 聂建国, 等. 钢-超高性能混凝土组合桥面系中栓钉连接件的疲劳性能研究[J]. 中国公路学报, 2017, 30(3):139-146.

    Liu Cheng, Fan Jiansheng, Nie Jianguo, et al. Fatigue performance research of headed studs in steel and Ultra-high performance concrete composite deck[J]. China Journal of Highway and Transport, 2017, 30(3):139-146. (in Chinese)

    [13] 王志宇, 张涛, 姜瑞娟, 等. 波形钢腹板-钢管混凝土翼缘组合梁桥疲劳性能的多尺度有限元分析[J]. 建筑科学与工程学报, 2018, 35(5):78-85.

    Wang Zhiyu, Zhang Tao, Jiang Ruijuan, et al. Multi-scale finite element analysis of fatigue property composite girder bridges with corrugated steel webs and concrete filled steel tubes[J]. Journal of Architecture and Civil Engineer, 2018, 35(5):78-85. (in Chinese)

    [14] 张大付, 余志武. 钢-混凝土组合箱梁疲劳性能的有限元分析[J]. 铁道科学与工程学报, 2015, 12(2):309-316.

    Zhang Dafu, Yu Zhiwu. Finite element analysis of fatigue behavior for steel-concrete composite box beam[J]. Journal of Railway Science and Engineering, 2015, 12(2):309-316. (in Chinese)

    [15]

    Wang C S, Wang Y Z, Cui B, et al. Numerical simulation of distortion-induced fatigue crack growth using extended finite element method[J]. Structure and Infrastructure Engineering, 2019, 16:106-122.

    [17] 黄侨. 桥梁钢-混凝土组合结构设计原理[M]. 第2 版. 北京:人民交通出版社, 2017:25-30. Huang Qiao, Design principle of bridge steel-concrete composite structure[M]. 2nd ed. Beijing:People's Transportation Press, 2017

    :25-30. (in Chinese)

    [18] 赵洁, 聂建国. 钢板-混凝土组合梁的非线性有限元分析[J]. 工程力学, 2009, 26(4):105-112.

    Zhao Jie, Nie Jianguo. Nonlinear finite element analysis of steel plate-concrete composite beams[J]. Engineering Mechanics, 2009, 26(4):105-112. (in Chinese)

    [19] 孟宪宏. 混凝土疲劳剩余强度试验及理论研究[D]. 大连:大连理工大学, 2006. Meng Xianhong. Experimental and theoretical research on residual strength of concrete under fatigue loading[D]. Dalian:Dalian University of Technology, 2006. (in Chinese)
    [20] 汪炳, 黄侨, 刘小玲. 疲劳荷载作用下栓钉连接件的抗剪承载力退化规律[J]. 哈尔滨工业大学学报, 2016, 48(9):76-82.

    Wang Bing, Huang Qiao, Liu Xiaoling. Shear capacity degradation law of stud connectors under fatigue loading[J]. Harbin Institute of Technology, 2016, 48(9):76-82. (in Chinese)

    [21]

    Tepfers R, Kutti T. Fatigue strength of plain, ordinary, and lightweight concrete[J]. Journal Proceedings, 1979, 76(5):635-652.

    [23]

    Wang B, Huang Q, Liu X, et al. Experimental investigation of steel-concrete composite beams with different degrees of shear connection under monotonic and fatigue loads[J]. Advances in Structural Engineering, 2018, 21(2):227-240.

    [24] 李玉顺, 张家亮, 童科挺, 等. 钢-竹组合工字形梁界面滑移及变形分析[J]. 工程力学, 2018, 35(7):150-158

    , 166. Li Yushun, Zhang Jialiang, Tong Keting, et al. Study on interface slip and deformation of bamboo-steel composite I-beams[J]. Engineering Mechanics, 2018, 35(7):150-158, 166. (in Chinese)

    [25]

    Nie J, Cai C S, Wang T. Stiffness and capacity of steel-concrete composite beams with profiled sheeting[J]. Engineering Structures, 2005, 27(7):1074-1085.

  • 期刊类型引用(7)

    1. 熊治华,牟栩麟,潘振华,刘宏宇. 新型梳齿榫型钢-混凝土组合梁桥设计方法研究——典型截面与节点承载能力. 水利与建筑工程学报. 2024(05): 134-144 . 百度学术
    2. 郭至博,孟令佩,卜建清,张吉仁,荀敬川. 超载对钢-混凝土组合梁桥疲劳力学性能影响分析. 河北工业科技. 2023(01): 1-9 . 百度学术
    3. 王辉. 钢-混组合梁混凝土桥面板疲劳寿命评估. 交通世界. 2023(12): 123-126 . 百度学术
    4. 王凯,刘小玲,汪炳. 带锈蚀栓钉的组合梁疲劳后抗弯承载力影响因素分析. 宁波大学学报(理工版). 2023(05): 51-57 . 百度学术
    5. 武彧,曾明根,苏庆田. 组合桥面板疲劳荷载后剩余承载力试验研究. 同济大学学报(自然科学版). 2023(10): 1542-1552 . 百度学术
    6. 罗鑫源,倪永军,马观领. 疲劳荷载作用下钢-混凝土组合梁变形计算. 公路交通科技. 2022(05): 85-94 . 百度学术
    7. 许子宜,张子飏,徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 288-296 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  416
  • HTML全文浏览量:  63
  • PDF下载量:  45
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-08-01
  • 修回日期:  2019-11-17
  • 刊出日期:  2020-06-13

目录

    /

    返回文章
    返回