EXPERIMENTAL AND CALCULATION OF FLEXURALMECHANICAL PROPERTIES OF REINFORCED REACTIVE POWDER CONCRETE SIMPLY SUPPORTED BEAMS
-
摘要: 活性粉末混凝土(RPC)与普通混凝土(OC)相比,具有超高的强度、高韧性和优异的耐久性,其构件承载力与刚度计算方法必然不同于普通混凝土构件。该文对4根钢筋活性粉末混凝土简支梁开展受弯性能足尺试验,获得了梁的开裂弯矩、极限弯矩及荷载-跨中位移曲线,揭示了RPC简支梁受弯变形特征与破坏模式,推导了钢筋RPC简支梁的开裂弯矩与正截面受弯承载力计算公式。结果表明:钢纤维RPC极限压应变为4394 με~5200 με,开裂应变为690 με~820 με,均远大于普通混凝土;由于添加了钢纤维,公式推导时必须考虑RPC拉区拉应力的影响,推导所得开裂弯矩、正截面受弯承载力及刚度公式计算值与试验值吻合较好,计算公式具有较高的精度,可用于钢筋RPC梁的设计计算。Abstract: Reactive powder concrete (RPC) has superior strength, high toughness and excellent durability compared with ordinary concrete (OC). The calculation method of the strength and stiffness of components of RPC is inevitably different from ordinary concrete components. A full-scale test on the bending performance of four reinforced RPC simply supported beams is conducted. The cracking moment, ultimate bending moment and mid-span load-deformation curve of the beam are obtained. The bending deformation characteristics and failure modes of RPC simply supported beams are revealed, and the calculation formulas for the cracking moment and the bending strength of the RPC simply supported beams are derived. The ultimate compressive strain of steel fiber reinforced RPC is 4394 με~5200 με, and the cracking strain is 690 με~820 με, which are much larger than those of OC. Due to the addition of steel fibers, the influence of the tensile stress of the RPC tension zone must be considered. The derived cracking moment, the normal section bending capacity and the calculated value of the stiffness are in good agreement with the experimental values. The calculation formula has high precision and can be used for the design calculation of reinforced RPC beams.
-
Keywords:
- RPC beam /
- mechanical properties /
- experimental study /
- strength /
- stiffness
-
-
[1] Wang D, Shi C, Wu Z, et al. A review on ultra high performance concrete:Part II. Hydration, microstructure and properties[J]. Construction and Building Materials, 2015, 96(8):368-377.
[2] 鞠彦忠, 崔建华, 王德弘, 等. 基于简化拉-压杆模型的钢筋活性粉末混凝土框架边节点受剪承载力研究[J]. 工程力学, 2017, 34(11):184-193. Ju Yanzhong, Cui Jianhua, Wang Dehong, et al. Research on shear capacity of reinforced reactive powder concrete frame side nodes based on simplified tension compression model[J]. Engineering Mechanics, 2017, 34(11):184-193. (in Chinese)
[3] Licheng W U, Zhe W, Di L, et al. Effect of confining pressure and steel fiber volume content on mechanical property of reactive powder concrete[J]. Journal of Building Materials, 2018, 21(2):208-215.
[4] Blais P Y, Couture M. Precast, prestressed pedestrian bridge-World's first reactive powder concrete structure[J]. PCI Journal, 1999, 44(5):60-71.
[5] Henry G Russell, Benjamin A. Graybeal. Ultra-high performance concrete:a state-of-the-art report for the bridge community[R]. McLean:Federal Highway Administration, U.S. Department of Transportation, 2013.
[6] Yoo D Y, Yoon Y S. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. International Journal of Concrete Structures and Materials, 2016, 10(2):125-142.
[7] 邓明科, 马福栋, 张阳玺, 等. 活性粉末混凝土抗压强度试验研究[J]. 硅酸盐通报, 2017, 36(8):2731-2736. Deng Mingke, Ma Fudong, Zhang Yangxuan, et al. Experimental study on compressive strength of reactive powder concrete[J]. Bulletin of Silicate, 2017, 36(8):2731-2736. (in Chinese)
[8] Hassan A M T, Jones S W, Mahmud G H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37:874-882. doi:10.1016/j.conbuildmat. 2012.04.030.
[9] 杨克家, 孙林柱, 李桅, 等. RPC中空受压构件截面设计及受力性能研究[J]. 工程力学, 2016, 33(5):166-175. Yang Kejia, Sun Linzhu, Li Wei, et al. Study on cross section design and mechanical performance of RPC hollow compression member[J]. Engineering Mechanics, 2016, 33(5):166-175. (in Chinese)
[10] 郑文忠, 李莉, 卢姗姗. 钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J]. 建筑结构学报, 2011, 32(6):125-134. Zheng Wenzhong, Li Li, Lu Shanshan. Experimental study on normal section mechanical behavior of reinforced reactive powder concrete simply supported beams[J]. Journal of Building Structures, 2011, 32(6):125-134. (in Chinese)
[11] 郑文忠, 卢姗姗, 李莉. GFRP筋活性粉末混凝土梁受力性能试验研究[J]. 建筑结构学报, 2011, 32(6):115-124. Zheng Wenzhong, Lu Shanshan, LI Li. Experimental study on the mechanical behavior of GFRP reinforced reactive powder concrete beams[J]. Journal of Building Structures, 2011, 32(6):115-124. (in Chinese)
[12] Abbas S, Soliman A M, Nehdi M L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages[J]. Construction & Building Materials, 2015, 75(2):429-441.
[13] 郑文忠, 李海艳, 王英. 高温后不同聚丙烯纤维掺量活性粉末混凝土力学性能试验研究[J]. 建筑结构学报, 2012, 33(9):119-126. Zheng Wenzhong, Li Haiyan, Wang Ying. Experimental study on mechanical properties of reactive polypropylene concrete with different polypropylene fibers after high temperature[J]. Journal of Building Structures, 2012, 33(9):119-126. (in Chinese)
[14] 邓宗才, 袁常兴. 高强钢筋与活性粉末混凝土黏结性能的试验研究[J]. 土木工程学报, 2014, 47(3):69-78. Deng Zongcai, Yuan Changxing. Experimental study on bonding properties of high strength steel bar and reactive powder concrete[J]. China Civil Engineering Journal, 2014, 47(3):69-78. (in Chinese)
[15] Gu C, Sun W, Guo L, et al. Effect of curing conditions on the durability of ultra-high performance concrete under flexural load[J]. Journal of Wuhan University of Technology, 2016, 31(2):278-285.
[16] 李海艳, 郑文忠, 罗百福. 高温后RPC立方体抗压强度退化规律研究[J]. 哈尔滨工业大学学报, 2012, 44(4):17-22. Li Haiyan, Zheng Wenzhong, Luo Baifu. Study on the degradation law of compressive strength of RPC cube after high temperature[J]. Journal of Harbin Institute of Technology, 2012, 44(4):17-22. (in Chinese)
-
期刊类型引用(9)
1. 卜良桃,刘港平. RPC应力-应变曲线系数与塑性损伤因子无量纲化计算模型研究. 工程力学. 2024(05): 120-133 . 本站查看
2. 胡玉庆,戚家南,陈东,崔冰,王景全. 考虑纤维桥接退化的钢筋UHPC梁受弯承载能力计算方法. 中国公路学报. 2024(07): 168-178 . 百度学术
3. 张信龙,王学历,王栋民,李晓慧,王全,梁峰,陈勇. 基于不同发泡剂种类与掺量的发泡活性粉末混凝土性能研究. 混凝土. 2024(11): 168-171 . 百度学术
4. 王凌波,陈杰,杨永清,朱钊,孙宝林,舒灏. 双折线先张预应力高强混凝土Ⅰ型梁抗弯性能足尺模型试验. 中国公路学报. 2023(07): 169-179 . 百度学术
5. 卜良桃,刘娟. 考虑型钢初应力的活性粉末混凝土包钢组合柱轴压性能研究. 建筑钢结构进展. 2023(11): 54-67 . 百度学术
6. 卜良桃,唐德志. RPC钢筋网加固RC梁抗弯性能试验研究和数值分析. 沈阳建筑大学学报(自然科学版). 2022(04): 601-609 . 百度学术
7. 罗华,骆雅洁,尹萱洋,周亮,刘王苗. 活性粉末混凝土梁抗剪承载力分析. 湖南理工学院学报(自然科学版). 2021(02): 34-37 . 百度学术
8. 卜良桃,杨丁辉. 二次受力下钢筋RPC外包型钢梁的受弯性能. 河海大学学报(自然科学版). 2021(06): 550-558 . 百度学术
9. 赵晓冬,张鹏,邓宇. 一种三等分叠层分配梁的结构设计方法. 广西科技大学学报. 2020(04): 76-82+90 . 百度学术
其他类型引用(25)
计量
- 文章访问数: 536
- HTML全文浏览量: 56
- PDF下载量: 60
- 被引次数: 34