高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析

霍冰, 刘习军, 张锐

霍冰, 刘习军, 张锐. 高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析[J]. 工程力学, 2020, 37(2): 241-249. DOI: 10.6052/j.issn.1000-4750.2019.01.0093
引用本文: 霍冰, 刘习军, 张锐. 高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析[J]. 工程力学, 2020, 37(2): 241-249. DOI: 10.6052/j.issn.1000-4750.2019.01.0093
HUO Bing, LIU Xi-jun, ZHANG Rui. STABILITY AND INFLUENCE FACTORS ON ICED CONDUCTOR WITH THE PARTICIPATION OF MULTI-ORDERED TORSIONAL MODES[J]. Engineering Mechanics, 2020, 37(2): 241-249. DOI: 10.6052/j.issn.1000-4750.2019.01.0093
Citation: HUO Bing, LIU Xi-jun, ZHANG Rui. STABILITY AND INFLUENCE FACTORS ON ICED CONDUCTOR WITH THE PARTICIPATION OF MULTI-ORDERED TORSIONAL MODES[J]. Engineering Mechanics, 2020, 37(2): 241-249. DOI: 10.6052/j.issn.1000-4750.2019.01.0093

高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析

基金项目: 国家自然科学基金项目(51808389);天津市自然科学基金项目(18JCQNJC08000)
详细信息
    作者简介:

    刘习军(1956-),男,天津人,教授,学士,博导,主要从事动力学与控制研究(E-mail:lxijun@tju.edu.cn);张锐(1985-),男,山东人,讲师,博士,主要从事动力学与控制研究(E-mail:zhangrui19850424@tust.edu.cn).

    通讯作者:

    霍冰(1987-),女,内蒙人,讲师,博士,主要从事动力学与控制研究(E-mail:huobing@tust.edu.cn).

  • 中图分类号: TM751;O322

STABILITY AND INFLUENCE FACTORS ON ICED CONDUCTOR WITH THE PARTICIPATION OF MULTI-ORDERED TORSIONAL MODES

  • 摘要: 利用Galerkin法建立面内前四阶和扭转前四阶模态耦合的覆冰导线动力学模型。借助分岔理论分析各阶模态的失稳临界条件,研究导线系统在不同风速、扭转阻尼比、档距及初始拉力下各阶模态的失稳规律,并利用数值模拟对理论分析结果进行验证。研究结果表明:考虑了扭转前四阶模态的导线模型,其面内前四阶模态特征值实部随风速变化的响应曲线先后经历2次Hopf分岔,呈限幅振动;扭转阻尼比的增大扩大了面内模态的失稳风速区域;随着档距增大,面内模态的2个Hopf分岔点和扭转模态的一个Hopf分岔点分别左移,表明大档距时,扭转模态逐渐代替面内模态的舞动;初始拉力对面内模态的失稳区域影响显著,而对扭转模态的影响很小。以上结论可为工程中导线的优化设计提供理论依据。
    Abstract: A dynamic model for iced conductor describing the coupling of the first four in-plane and torsional modes has been established by applying the Galerkin method. Subsequently, the Bifurcation theory was employed to study the critical unstable condition of every mode. Galloping laws of iced conductor were analyzed under different parameters including wind velocity, torsional ratio, cable length and initial tension. Numerical procedures were finally used to verify the theoretical results. The results indicate that with the consideration of the first four torsional modes, the real parts of the eigenvalues for the first four in-plane modes experienced two Hopf bifurcations as the wind velocity increased, performing limited vibration. The increase in the torsional damping ratio could enlarge the instable region of in-plane modes. The longer cable length made a left shift of Hopf bifurcations for both in-plane and torsional modes, denoting that in-plane galloping would be substituted by the torsional ones in longer cable length. Initial tension had a remarkable impact on in-plane modes, but no obvious influence on the torsional ones. The conclusion can provide theoretical basis for conductor optimization.
  • [1] Hartog J P D. Transmission line vibration due to sleet[J]. Transactions of the American Institute of Electrical Engineers, 1933, 51(4):1074-1076.
    [2] Nigol O, Buchan P G. Conductor galloping-Part II torsional mechanism[J]. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(2):708-720.
    [3] Yu P, Shah A H, Popplewell N. Inertially coupled galloping of iced conductors[J]. Journal of Applied Mechanics-Transactions of the ASME, 1992, 59(1):140-145.
    [4] McComber P, Paradis A. A cable galloping model for thin ice accretions[J]. Atmospheric Research, 1998, 46(1):13-25.
    [5] 侯磊, 陈予恕. 输电线路导线舞动中的混沌运动研究[J]. 振动工程学报, 2014, 27(1):75-83. Hou Lei, Chen Yushu. Study on chaos in galloping of the transmission line[J]. Journal of Vibration Engineering, 2014, 27(1):75-83. (in Chinese)
    [6] Luongo A, Piccardo G. A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance[J]. Journal of Vibration and Control, 2008, 14(1/2):135-157.
    [7] 严波, 刘小会, 赵莉, 等. 存在内共振的覆冰四分裂导线的非线性舞动[J]. 应用数学和力学, 2014, 35(1):39-49. Yan Bo, Liu Xiaohui, Zhao Li, et al. Nonlinear galloping of iced quad-bundle conductors with internal resonances[J]. Applied Mathematics and Mechanics, 2014, 35(1):39-49. (in Chinese)
    [8] Zhang Q, Popplewell N, Shah A H. Galloping of bundle conductor[J]. Journal of Sound and Vibration, 2000, 234(1):115-134.
    [9] 李欣业, 张华彪, 高仕赵, 等. 三自由度模型覆冰输电导线舞动的数值仿真分析[J]. 河北工业大学学报, 2010, 39(3):1-5. Li Xinye, Zhang Huabiao, Gao Shizhao, et al. Numerical analysis of galloping of iced power transmission lines[J]. Journal of Hebei University of Technology, 2010, 39(3):1-5. (in Chinese)
    [10] 蔡君艳, 刘习军, 张素侠. 覆冰四分裂导线舞动近似解析解分析[J]. 工程力学, 2013, 30(5):305-310. Cai Junyan, Liu Xijun, Zhang Suxia. Analysis of approximate analytical solution on galloping of iced quad bundle conductors[J]. Engineering Mechanics, 2013, 30(5):305-310. (in Chinese)
    [11] 楼文娟, 杨伦, 潘小涛. 覆冰导线舞动的非线性动力学及参数分析[J]. 土木工程学报, 2014, 47(5):26-33. Lou Wenjuan, Yang Lun, Pan Xiaotao. Nonlinear dynamics and parametric analysis for galloping response of iced conductor[J]. China Civil Engineering Journal, 2014, 47(5):26-33. (in Chinese)
    [12] 霍涛, 晏致涛, 李正良, 等. 考虑弹性边界曲梁模型的覆冰输电线舞动分析[J]. 工程力学, 2015, 32(1):137-144. Huo Tao, Yan Zhitao, Li Zhengliang, et al. Multi-scale method galloping analysis of iced transmission lines based on curved-beam model considering elastic boundary conditions[J]. Engineering Mechanics, 2015, 32(1):137-144. (in Chinese)
    [13] 霍冰, 刘习军, 张素侠. 相邻档距作用下覆冰导线舞动的复杂运动响应[J]. 工程力学, 2016, 33(5):249-256. Huo Bing, Liu Xijun, Zhang Suxia. Complex response of galloping for an iced transmission line considering excitation of adjacent span[J]. Engineering Mechanics, 2016, 33(5):249-256. (in Chinese)
    [14] Zhang M, Zhao G F, Li J. Nonlinear dynamic analysis of high-voltage overhead transmission lines[J]. Shock and Vibration, 2018, 2018:1-35.
    [15] Ohkuma T, Kagami J, Nakauchi H, et al. Numerical analysis of overhead transmission line galloping considering wind turbulence[J]. Electrical Engineering in Japan, 2000, 131(3):19-33.
    [16] Luongo A, Zulli D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables[J]. Journal of Sound and Vibration, 2008, 315:375-393.
    [17] Liu X J, Huo B. Nonlinear vibration and multimodal interaction analysis of transmission line with thin ice accretions[J]. International Journal of Applied Mechanics, 2015, 7(1):1550007(31).
    [18] 刘海英, 郝淑英, 冯晶晶, 等. 覆冰导线连续体模型及仿真分析[J]. 武汉大学学报:工学版, 2016, 49(2):285-289. Liu Haiying, Hao Shuying, Feng Jingjing, et al. Continuum model of iced conductor and simulation analysis[J]. Engineering Journal of Wuhan University, 2016, 49(2):285-289. (in Chinese)
    [19] 霍冰. 风致非圆截面柔长结构的多模态耦合振动研究[D]. 天津:天津大学, 2015. Huo Bing. Multi-modal galloping for a slender-long structure with non-circular cross section subjected to wind disturbance[D]. Tianjin:Tianjin University, 2015. (in Chinese)
    [20] 胡宇达, 张明冉. 两平行导线间轴向运动载流梁的非线性主共振[J]. 工程力学, 2018, 35(10):241-251. Hu Yuda, Zhang Mingran. Nonlinear-primary resonance of axially moving current-carrying beams between two parallel wires[J]. Engineering Mechanics, 2018, 35(10):241-251. (in Chinese)
    [21] Anqi Z, Xijun L, Suxia Z, et al. Wind tunnel test of the influence of an interphase spacer on the galloping control of iced eight-bundled conductors[J]. Cold Regions Science and Technology, 2018, 155:354-366.
    [22] 谭平, 刘良坤, 陈洋洋, 等. 非线性能量阱减振系统受基底简谐激励的分岔特性分析[J]. 工程力学, 2017, 34(12):76-83. Tan Ping, Liu Liangkun, Chen Yangyang, et al. Bifurcation analysis of nonlinear energy sink absorption system under ground harmonic excitation[J]. Engineering Mechanics, 2017, 34(12):76-83. (in Chinese)
    [23] Zhou L, Yan B, Zhang L, et al. Study on galloping behavior of iced eight bundle conductor transmission lines[J]. Journal of Sound & Vibration, 2016, 362(2016):85-110.
计量
  • 文章访问数:  421
  • HTML全文浏览量:  69
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-10
  • 修回日期:  2019-07-04
  • 刊出日期:  2020-05-26

目录

    /

    返回文章
    返回