李国强, 张卫国, 黄霞, 王勋年. 翼型动态风洞试验洞壁效应研究[J]. 工程力学, 2019, 36(8): 235-247. DOI: 10.6052/j.issn.1000-4750.2018.07.0380
引用本文: 李国强, 张卫国, 黄霞, 王勋年. 翼型动态风洞试验洞壁效应研究[J]. 工程力学, 2019, 36(8): 235-247. DOI: 10.6052/j.issn.1000-4750.2018.07.0380
LI Guo-qiang, ZHANG Wei-guo, HUANG Xia, WANG Xun-nian. STUDY ON WIND TUNNEL WALL INTERFERENCE IN DYNAMIC AIRFOIL TEST[J]. Engineering Mechanics, 2019, 36(8): 235-247. DOI: 10.6052/j.issn.1000-4750.2018.07.0380
Citation: LI Guo-qiang, ZHANG Wei-guo, HUANG Xia, WANG Xun-nian. STUDY ON WIND TUNNEL WALL INTERFERENCE IN DYNAMIC AIRFOIL TEST[J]. Engineering Mechanics, 2019, 36(8): 235-247. DOI: 10.6052/j.issn.1000-4750.2018.07.0380

翼型动态风洞试验洞壁效应研究

STUDY ON WIND TUNNEL WALL INTERFERENCE IN DYNAMIC AIRFOIL TEST

  • 摘要: 翼型动态失速导致气动非线性特征突出,与洞壁效应耦合给风洞试验数据带来极大的不确定性,该文通过试验和数值手段揭示了翼型动态试验洞壁效应产生机理和影响规律,结果表明:相比于静态试验,由于洞壁的存在,动态试验翼型的尾流区的总压和静压分布更不均匀,动态试验翼型在相同迎角下的洞壁干扰更严重,表现为翼型在大迎角段,洞壁干扰导致模型中间截面附近和端部截面附近的速度分布和压力分布差异更明显,且相比于压力面,吸力面流动的二维性变得较差。侧壁干扰抑制了翼型中间截面附近的流向分离,诱导了端部附近的展向分离流。上洞壁和下洞壁的非定常压力系数随翼型实时迎角变化也呈迟滞环曲线,迟滞环方向相反,且脉动一阶主频率与翼型俯仰振荡频率一致。风洞洞壁干扰下,翼型动态失速三维涡结构呈“Ω”型。风洞上下壁干扰使得翼型线性段的升力系数和升力线斜率均增加,诱导翼型提前失速;在负行程,则使得翼型升力系数降低。侧壁干扰在负行程诱导了翼型表面的展向流动、减小了翼型弦向流动速度,引起翼型升力系数减小,正行程范围则影响较小,且翼型失速延迟。FL-11风洞翼型动态试验的上下壁干扰效应为主导因素;但是侧壁干扰不可忽略,特别是在翼型振荡周期的大迎角和负行程范围。

     

    Abstract: The aerodynamic nonlinear characteristics of airfoil caused by dynamic stall are prominent, and the coupling effect with wall interference brings great uncertainty to wind tunnel test data. In view of this, the mechanism and influence law of the wall effect in the airfoil dynamic test are revealed by means of experiment and numerical method. The results show that:compared to the static test, due to the existence of the wall interference, both the total pressure and the static pressure distribution of the wake zone during the dynamic test of airfoil are even more inhomogeneous. The wind tunnel wall interference of dynamic airfoil test is more serious. The differences of the velocity and pressure distribution on the middle section and the end section of airfoil are more obvious. Compared with the pressure surface, the two-dimensional flow of the suction surface becomes worse. The side wall interference suppresses the flow separation near the middle section of airfoil, and induces a spanwise separation flow near the end. The unsteady pressure coefficient of the upper and lower wall versus real-time attack angle also shows a hysteresis effect, the direction of the hysteresis loop is opposite, and the main characteristic frequency of the wall pressure fluctuation equals to the oscillation frequency of airfoil pitching. Influenced by the wind tunnel wall interference, the three-dimensional dynamic stall vortex structure of the airfoil is "Omega" type. In the positive stroke, the lift coefficient and the lift line slope are increased by the upper and lower wall of the wind tunnel, and the airfoil is induced to be stalled in advance. In the negative stroke, the lift coefficient of airfoil is reduced. The sidewall interference induces a spanwise flow on airfoil surface, reduces the chord-orientation flow velocity of airfoil, causes the reduction of lift coefficient in the negative stroke, but the interference effect is less in the positive stroke, besides the dynamic stall is delayed. The upper and lower wall interference of the dynamic airfoil test in the FL-11 wind tunnel should be a dominant factor. However, the sidewall interference cannot be ignored, especially at the high angle of attack and negative stroke during the oscillation period of airfoil.

     

/

返回文章
返回