LY315钢屈曲约束支撑耗能性能试验研究

杨璐, 卫璇, 施刚, 肖世勇

杨璐, 卫璇, 施刚, 肖世勇. LY315钢屈曲约束支撑耗能性能试验研究[J]. 工程力学, 2019, 36(1): 200-206. DOI: 10.6052/j.issn.1000-4750.2017.11.0879
引用本文: 杨璐, 卫璇, 施刚, 肖世勇. LY315钢屈曲约束支撑耗能性能试验研究[J]. 工程力学, 2019, 36(1): 200-206. DOI: 10.6052/j.issn.1000-4750.2017.11.0879
YANG Lu, WEI Xuan, SHI Gang, XIAO Shi-yong. EXPERIMENT ON ENERGY DISSIPATION PERFORMANCE OF LY315 STEEL BUCKLING-RESTRAINED BRACES[J]. Engineering Mechanics, 2019, 36(1): 200-206. DOI: 10.6052/j.issn.1000-4750.2017.11.0879
Citation: YANG Lu, WEI Xuan, SHI Gang, XIAO Shi-yong. EXPERIMENT ON ENERGY DISSIPATION PERFORMANCE OF LY315 STEEL BUCKLING-RESTRAINED BRACES[J]. Engineering Mechanics, 2019, 36(1): 200-206. DOI: 10.6052/j.issn.1000-4750.2017.11.0879

LY315钢屈曲约束支撑耗能性能试验研究

基金项目: 北京市科技新星计划项目(2016117)
详细信息
    作者简介:

    卫璇(1992-),男,河南人,硕士生,主要从事钢结构研究(E-mail:weiyxmm@163.com);施刚(1977-),男,安徽人,教授,博士,博导,从事结构工程研究(E-mail:shigang@Tsinghua.edu.cn);肖世勇(1981-),男,云南人,机械工程师,工学学士,从事减震产品研究(E-mail:279657333@qq.com).

    通讯作者:

    杨璐(1982-),男,湖北人,教授,博士,博导,从事钢结构及施工技术研究(E-mail:lyang@bjut.edu.cn).

  • 中图分类号: TU352.1+1;TU317+.1

EXPERIMENT ON ENERGY DISSIPATION PERFORMANCE OF LY315 STEEL BUCKLING-RESTRAINED BRACES

  • 摘要: 采用新型抗震结构用软钢LY315作为内核材料,设计加工了3根全钢型装配式屈曲约束支撑。对支撑进行了拉压往复加载试验,并对其力学性能进行分析,研究此类新型屈曲约束支撑的耗能性能。结果表明:支撑构造合理,滞回曲线饱满,耗能性能稳定;试件的最大位移延性系数均大于15,抗拉应变强化系数在1.21~1.29,等效粘性阻尼比在0.442~0.465,累积塑性变形均大于500倍的屈服位移;对试件的疲劳加载进行分析,各项参数均满足JGJ 297-2013《建筑消能减震技术规程》的要求,表明试件有良好的低周疲劳性能。
    Abstract: Three buckling-restrained braces (BRBs) assembled with section steel were designed using novel soft steel LY315 as the core material. Cyclic loading tests on three specimens were conducted to analyze the mechanical properties and the energy dissipation of the new type of BRBs. The results indicate that the structure of BRBs is reasonable and all specimens exhibit a full hysteretic curve and stable energy dissipation performance. The ultimate ductility coefficients of specimens were greater than 15. The strain hardening coefficients were between 1.21 and 1.29. The equivalent damping ratios were between 0.442 and 0.465. The cumulative plastic deformations were more than 500 times the yield displacement. The fatigue loading was analyzed. All performance parameters were able to meet the requirements in JGJ 297-2013 'Technical specification for seismic energy dissipation of buildings', indicating excellent low-cycle fatigue behavior of the BRBs.
  • [1] Yoshino T, Karino Y. Experimental study on shear wall with braces:Part 2. Summaries of technical papers of annual meeting[J]. Architectural Institute of Japan, Structural Engineering Section, 1971, 11:403-404. (in Japanese)
    [2] Xie Q. State of the art of buckling-restrained braces in Asia[J]. Journal of Constructional Steel Research, 2005, 61(6):727-748.
    [3] Iwata M, Murai M. Buckling-restrained brace using steel mortar planks; performance evaluation as a hysteretic damper[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(14):1807-1826.
    [4] Guerrero H, Ruíz-García J, Escobar J A, et al. Response to seismic sequences of short-period structures equipped with Buckling-Restrained Braces located on the lakebed zone of Mexico City[J]. Journal of Constructional Steel Research, 2017, 137:37-51.
    [5] Tremblay R, Bolduc P, Neville R, et al. Seismic testing and performance of buckling-restrained bracing systems[J]. Canadian Journal of Civil Engineering, 2006, 33(2):183-198.
    [6] 贾明明, 张素梅. 抑制屈曲支撑滞回性能分析[J]. 天津大学学报(自然科学与工程技术版), 2008, 41(6):736-744. Jia Mingming, Zhang Sumei. Analysis of hysteretic behavior of buckling-restrained brace[J]. Journal of Tianjin University, 2008, 41(6):736-744. (in Chinese)
    [7] 张东彬, 潘鹏, 王萌资, 等. 开长孔式叠层钢管屈曲约束支撑试验研究[J]. 土木工程学报, 2016, 49(12):9-15. Zhang Dongbin, Pan Peng, Wang Mengzi, et al. Experimental study on performance of a bucklingrestrained brace consisting of three steel tubes with slotted holes in the middle tube[J]. China Civil Engineering Journal, 2016, 49(12):9-15. (in Chinese)
    [8] 张艳霞, 李振兴, 刘安然, 等. 自复位可更换软钢耗能支撑性能研究[J]. 工程力学, 2017, 34(8):180-193. Zhang Yanxia, Li Zhenxing, Liu Anran, et al. Research on the behavior of self-centering replaceable mild steel energy-dissipating braces[J]. Engineering Mechanics, 2017, 34(8):180-193. (in Chinese)
    [9] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9):1-14. Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces:types, design methods and applications[J]. Engineering Mechanics, 2016, 33(9):1-14. (in Chinese)
    [10] Guo Y L, Fu P P, Zhou P, et al. Elastic buckling and load resistance of a single cross-arm pre-tensioned cable stayed buckling-restrained brace[J]. Engineering Structures, 2016, 126:516-530.
    [11] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6):19-28. Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6):19-28. (in Chinese)
    [12] Dusicka P, Tinker J. Global restraint in ultra-lightweight buckling-restrained braces[J]. Journal of Composites for Construction, 2013, 17(1):139-150.
    [13] Usami T, Wang C L, Funayama J. Developing highperformance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(4):643-661.
    [14] 黄海涛, 尹学军, 高向宇, 等. 足尺错十字截面组合热轧角钢防屈曲支撑试验研究[J]. 土木工程学报, 2010, 43(增刊2):164-169. Huang Haitao, Yin Xuejun, Gao Xiangyu, et al. Static test studies on full-scale buckling-restrained brace specimens with quasi-cross section of steel angles[J]. China Civil Engineering Journal, 2010, 43(Suppl 2):164-169. (in Chinese)
    [15] 王佼姣, 石永久, 严红, 等. 低屈服点全钢防屈曲支撑抗震性能试验研究[J]. 土木工程学报, 2013, 46(10):9-16. Wang Jiaojiao, Shi Yongjiu, Yan Hong, et al. Experimental study on the seismic behavior of all-steel buckling-restrained brace with low yield point[J]. China Civil Engineering Journal, 2013, 46(10):9-16. (in Chinese)
    [16] 孙飞飞, 刘猛, 李国强, 等. 国产TJ-I型屈曲约束支撑的性能研究[J]. 河北工程大学学报(自然科学版), 2009, 26(1):5-9. Sun Feifei, Liu Meng, Li Guoqiang, et al. Improvement and experimental study of domestic TJ-1 type bucklingrestrained brace[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2009, 26(1):5-9. (in Chinese)
    [17] 严红, 潘鹏, 王元清,等. 一字形全钢防屈曲支撑耗能性能试验研究[J]. 建筑结构学报, 2012, 33(11):142-149. Yan Hong, Pan Peng, Wang Yuanqing, et al. Experimental study of buckling-restrained brace with in-line steel core plate encased in double web wide flange steel outer unit[J]. Journal of Building Structures, 2012, 33(11):142-149. (in Chinese)
    [18] GB/T 228-2002, 金属材料室温拉伸试验方法[S]. 北京:中国标准出版社, 2002. GB/T 228-2002, Metallic materials:tensile testing at ambient temperature[S]. Beijing:China Standard Press, 2002. (in Chinese)
    [19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [20] JGJ 99-2015, 高层民用建筑钢结构技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ 99-2015, Technical specification for steel structure of tall building[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
    [21] 赵俊贤, 吴斌. 防屈曲支撑的工作机理及稳定性设计方法[J]. 地震工程与工程振动, 2009, 29(3):131-139. Zhao Junxian, Wu Bin. Working mechanism and stability design methods of buckling-restrained braces[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3):131-139. (in Chinese)
    [22] ANSI/AISC 341-05, Seismic provisions for structural steel building[S]. Chicago:AISC, 2010.
    [23] 周云, 龚晨, 陈清祥,等. 开孔钢板装配式屈曲约束支撑减震性能试验研究[J]. 建筑结构学报, 2016, 37(8):101-107. Zhou Yun, Gong Chen, Chen Qingxiang, et al. Experimental study on seismic performance of perforated steel-plate assembled buckling-restrained brace[J]. Journal of Building Structures, 2016, 37(8):101-107. (in Chinese)
    [24] JGJ 297-2013, 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ 297-2013, Technical specification for seismic energy dissipation of buildings[S]. Beijing:China Architecture & Building Press, 2013. (in Chinese)
  • 期刊类型引用(9)

    1. 赵鑫,黄双超,杨吉忠,Zhen YANG,温泽峰. 更高速下轮轨瞬态“滚-滑-跳”接触行为及中/短波不平顺临界限值研究. 铁道学报. 2024(10): 21-32 . 百度学术
    2. 赵长雨,赵鑫,王鹏,沈正行,温泽峰. 考虑研磨子——车轮和轮轨作用的城际动车组车轮磨耗预测. 工程力学. 2023(01): 229-237 . 本站查看
    3. 沈正行,赵鑫,王平,刘顺稳,温泽峰. 波磨激励下的地铁钢轨滚动接触疲劳裂纹瞬态扩展行为. 铁道科学与工程学报. 2023(12): 4552-4561 . 百度学术
    4. 王志强,雷震宇. 地铁小半径曲线钢弹簧浮置板轨道钢轨波磨成因分析. 中国机械工程. 2023(24): 2899-2908 . 百度学术
    5. 黎嘉欣,陶功权,刘希政,梁红琴,温泽峰. 基于两种轨道线路建模方法的地铁车轮磨耗预测对比分析. 工程力学. 2022(06): 226-235 . 本站查看
    6. 罗易飞,赵鑫,周志军,尹利钧,温泽峰,杨吉忠. 缩尺车轮-环轨试验台轮轨静态接触相似性研究. 中南大学学报(自然科学版). 2022(10): 3901-3911 . 百度学术
    7. 黄双超,赵鑫,张笃超,许黎明,温泽峰,金学松. 高阶多边形车轮的瞬态磨耗行为分析. 中南大学学报(自然科学版). 2021(02): 648-658 . 百度学术
    8. 朱海燕,袁遥,肖乾,黎洁,郑宇轩. 钢轨波磨研究进展. 交通运输工程学报. 2021(03): 110-133 . 百度学术
    9. 周墨臻,张丙印,张顶立,方黄城. 基于三场变分原理的对偶mortar有限元法. 工程力学. 2020(06): 51-59 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  665
  • HTML全文浏览量:  113
  • PDF下载量:  132
  • 被引次数: 17
出版历程
  • 收稿日期:  2017-11-16
  • 修回日期:  2018-01-15
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回