基于支撑刚度的消能减震结构最优阻尼参数研究

兰香, 潘文, 白羽, 张龙飞, 余文正

兰香, 潘文, 白羽, 张龙飞, 余文正. 基于支撑刚度的消能减震结构最优阻尼参数研究[J]. 工程力学, 2018, 35(8): 208-217. DOI: 10.6052/j.issn.1000-4750.2017.11.0810
引用本文: 兰香, 潘文, 白羽, 张龙飞, 余文正. 基于支撑刚度的消能减震结构最优阻尼参数研究[J]. 工程力学, 2018, 35(8): 208-217. DOI: 10.6052/j.issn.1000-4750.2017.11.0810
LAN Xiang, PAN Wen, BAI Yu, ZHANG Long-fei, YU Wen-zheng. RESEARCH ON OPTIMUM DAMPING PARAMETERS OF AN ENERGY DISSIPATION STRUCTURE BASED ON THE SUPPORT STIFFNESS[J]. Engineering Mechanics, 2018, 35(8): 208-217. DOI: 10.6052/j.issn.1000-4750.2017.11.0810
Citation: LAN Xiang, PAN Wen, BAI Yu, ZHANG Long-fei, YU Wen-zheng. RESEARCH ON OPTIMUM DAMPING PARAMETERS OF AN ENERGY DISSIPATION STRUCTURE BASED ON THE SUPPORT STIFFNESS[J]. Engineering Mechanics, 2018, 35(8): 208-217. DOI: 10.6052/j.issn.1000-4750.2017.11.0810

基于支撑刚度的消能减震结构最优阻尼参数研究

基金项目: 国家自然科学基金项目(51368027,51168024)
详细信息
    作者简介:

    兰香(1989-),男,云南人,博士生,主要从事消能减震结构设计与研究(E-mail:lx523947015@sina.com);白羽(1964-),男,云南人,教授,博士,博导,主要从事结构抗震和防灾减灾研究(E-mail:645022414@qq.com);张龙飞(1983-),男,河北人,博士生,主要从事消能减震结构设计与研究(E-mail:80154369@qq.com);余文正(1985-),男,湖北人,博士生,主要从事消能减震结构设计与研究(E-mail:254810607@qq.com).

    通讯作者:

    潘文(1968-),男,江苏人,教授,博士,博导,主要从事结构抗震和防灾减灾研究(E-mail:panwen@vip.sina.com).

  • 中图分类号: TU352.1;TU311.3

RESEARCH ON OPTIMUM DAMPING PARAMETERS OF AN ENERGY DISSIPATION STRUCTURE BASED ON THE SUPPORT STIFFNESS

  • 摘要: 基于传统消能减震体系力学模型的研究,提出考虑支撑等连接件刚度的实用减震体系力学模型。结合数学方法中的拉普拉斯变换和傅里叶变换,推导实用减震体系的传递函数及其频率特性。再利用频率响应曲线中的定点理论对频率特性进行深入研究,发现频率响应曲线的定点是曲线峰值能够达到的理论最低点,进一步推出实用减震体系的最优阻尼比和频响曲线最低峰值等参数的计算公式。最后通过单自由度体系验证了最优阻尼比的存在性,给出支撑刚度系数的建议取值范围,并通过工程实例说明支撑刚度系数在消能减震结构设计中的重要意义。
    Abstract: A practical mechanical model of damping system considering the stiffness of the connection element was proposed, based on the research of mechanical models of traditional energy dissipation system. Firstly, the transfer function and frequency characteristic of the practical damping system were derived using the Laplace transform and the Fourier transform of the mathematical method. Subsequently, the fixed-point theory was used in the frequency response curves to examine the frequency characteristic. The results showed that the fixed-point of the frequency response curves was the theoretical lowest point the curves' peak value could reach. The optimal damping ratio and the minimum peak value of the frequency response curves were derived. Finally, the existence of the optimal damping ratio was verified by using a single degree of freedom system. A recommended range of the support stiffness coefficient was provided. Moreover, the importance of the support stiffness coefficient in energy dissipation structure designing was revealed by studying a project example.
  • [1] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [2] JGJ 297-2013, 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ 297-2013, Technical specification for seismic energy dissipation of building[S]. Beijing:China Architecture & Building Press, 2013. (in Chinese)
    [3] 翁大根, 张超, 吕西林, 等. 附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击, 2012, 31(21):80-88. Weng Dagen, Zhang Chao, Lü Xilin, et al. Practical design procedure for a energy-dissipated structure with viscous dampers[J]. Journal of Vibration and Shock, 2012,31(21):80-88. (in Chinese)
    [4] 王奇, 干钢. 基于线性化等效方法的消能减震结构有效附加阻尼比计算[J]. 建筑结构学报, 2012, 33(11):46-52. Wang Qi, Gan Gang. Calculation of effective additional damping ratio of energy dissipation structure based on linear equivalent method[J]. Journal of Building Structures, 2012, 33(11):46-52. (in Chinese)
    [5] 巫振弘, 薛彦涛, 王翠坤, 等. 多遇地震作用下消能减震结构附加阻尼比计算方法[J]. 建筑结构学报, 2013, 34(12):19-25. Wu Zhenhong, Xue Yantao, Wang Cuikun, et al. Research on additional damping ratio calculation methods under frequent earthquake[J]. Journal of Building Structures, 2013, 34(12):19-25. (in Chinese)
    [6] 陆伟东, 刘伟庆, 汪涛. 消能减震结构附加等效阻尼比计算方法[J]. 南京工业大学学报(自科版), 2009, 31(1):97-100. Lu Weidong, Liu Weiqing, Wang Tao. Calculation method for additional equivalent damping ratio of energy dissipation structure[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2009, 31(1):97-100. (in Chinese)
    [7] 何文福, 陈承渊, 刘阳, 等. 黏滞阻尼器结构等效阻尼比计算方法比较研究[J]. 结构工程师, 2016, 32(1):10-16. He Wenfu, Chen Chengyuan, Liu Yang, et al. Comparative study of equivalent damping ratio calculation methods for a structure with viscous dampers[J]. Structural Engineers, 2016, 32(1):10-16. (in Chinese)
    [8] 王维凝, 闫维明, 彭凌云. 不同水准地震作用下铅消能器附加给结构的有效阻尼比及其设计取值研究[J]. 工程力学, 2014, 31(3):173-180. Wang Weining, Yan Weiming, Peng Lingyun. Study on the additional damping ratio provided by lead dampers and its design values under different seismic levels[J]. Engineering Mechanics, 2014, 31(3):173-180. (in Chinese)
    [9] 吴克川, 陶忠, 韦光兰, 等. 地震作用下防屈曲支撑减震结构附加有效阻尼比计算及变化规律研究[J]. 振动与冲击, 2016, 35(2):146-152. Wu Kechuan, Tao Zhong, Wei Guanglan, et al. Calculation of the additional damping ratio of buckling-restrained brace structure and its variation under earthquake[J]. Journal of Vibration and Shock, 2016, 35(2):146-152. (in Chinese)
    [10] Lee S H, Min K W, Hwang J S, et al. Evaluation of equivalent damping ratio of a structure with added dampers[J]. Engineering Structures, 2004, 26(3):335-346.
    [11] Lavan O. Optimal design of viscous dampers and their supporting members for the seismic retrofitting of 3D irregular frame structures[J]. Journal of Structural Engineering, 2015, 141(11):1-15.
    [12] Pollini N, Lavan O, Amir O. Towards realistic minimum-cost optimization of viscous fluid dampers for seismic retrofitting[J]. Bulletin of Earthquake Engineering, 2016, 14(3):971-998.
    [13] 杜永峰, 赵国藩. 隔震结构中非经典阻尼影响及最佳阻尼比分析[J]. 地震工程与工程振动, 2000, 20(3):100-107. Du Yongfeng, Zhao Guofan. Analysis of effect of non-classical damping on isolated structure and optimum dmping[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(3):100-107. (in Chinese)
    [14] 钟立来, 吴赖云, 黄旭辉, 等. 非线性调谐质量阻尼器之最佳化设计公式[J]. 结构工程, 2009, 24(2):55-90. Zhong Lilai, Wu Laiyun, Huang Xuhui, et al. Optimized design formula of nonlinear tuned mass dampers[J]. Structural Engineering, 2009, 24(2):55-90. (in Chinese)
    [15] 钟立来, 吴赖云, 高培修, 等. 结构隔震系统之最佳黏滞阻尼比[J]. 结构工程, 2011, 26(3):21-46. Zhong Lilai, Wu Laiyun, Gao Peixiu, et al. Optimal viscous damping ratio of structural isolation system[J]. Structural Engineering, 2011, 26(3):21-46. (in Chinese)
    [16] Dedomenico D, Ricciardi G. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)[J]. Earthquake Engineering & Structural Dynamics, 2017(1):1-24.
    [17] 兰香, 潘文, 况浩伟, 等. 基于层间位移利用率法修正消能减震结构的附加阻尼[J]. 振动与冲击, 2017, 36(20):64-71. Lan Xiang, Pan Wen, Kuang Haowei, et al. Correction additional damping of an energy-dissipated structure based on a story drifts utilization ratio method[J]. Journal of Vibration and Shock, 2017, 36(20):64-71. (in Chinese)
    [18] 缪志伟, 宋前恩, 李爱群. 减震设计与抗震设计RC框架结构抗地震倒塌能力对比[J]. 工程力学, 2016, 33(8):24-31. Miao Zhiwei, Song Qian'en, Li Aiqun. Comparison of collapse-resistance capacities of RC frames with and without dampers[J]. Engineering Mechanics, 2016, 33(8):24-31. (in Chinese)
    [19] 黄小宁, 杜永峰, 李慧. 平面不规则RC框剪结构基于性能的减震设计方法[J]. 工程力学, 2017, 34(3):68-75. Huang Xiaoning, Du Yongfeng, Li Hui. Performancebased design method for irregular plane RC frame-shear-wall structure with dissipation devices[J]. Engineering Mechanics, 2017, 34(3):68-75. (in Chinese)
    [20] Fournier J A, Cheng S H. Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations[J]. Journal of Bridge Engineering, 2014, 19(4):1-12.
    [21] Chen Y, Chai Y H. Effects of brace stiffness on performance of structures with supplemental Maxwell model-based brace-damper systems[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(1):75-92.
    [22] 丁文镜. 减振理论[M]. 北京:清华大学出版社, 2014. Ding Wenjing. Theory of vibration reduction[M]. Beijing:Tsinghua University Press, 2014. (in Chinese)
    [23] Anil K Chopra. Dynamics of structures:Theory and applications to earthquake engineering[M]. 4th ed. Englewood Cliffs, New Jersey:Prentice Hall, 2012.
    [24] 马立新, 李孜. 结构振动控制[M]. 北京:机械工业出版社, 2010. Ma Lixin, Li Zi. Vibration control of structure[M]. Beijing:Machinery Industry Press, 2010. (in Chinese)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  30
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-01
  • 修回日期:  2018-02-06
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回