可更换延性耗能连接组件的钢框架节点抗震性能研究

王萌, 柯小刚, 吴照章

王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151-163. DOI: 10.6052/j.issn.1000-4750.2017.09.0743
引用本文: 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151-163. DOI: 10.6052/j.issn.1000-4750.2017.09.0743
WANG Meng, KE Xiao-gang, WU Zhao-zhang. SEISMIC BEHAVIOR OF STEEL FRAME CONNECTIONS WITH REPLACEABLE HIGH DUCTILITY AND ENERGY DISSIPATION COMPONENTS[J]. Engineering Mechanics, 2018, 35(12): 151-163. DOI: 10.6052/j.issn.1000-4750.2017.09.0743
Citation: WANG Meng, KE Xiao-gang, WU Zhao-zhang. SEISMIC BEHAVIOR OF STEEL FRAME CONNECTIONS WITH REPLACEABLE HIGH DUCTILITY AND ENERGY DISSIPATION COMPONENTS[J]. Engineering Mechanics, 2018, 35(12): 151-163. DOI: 10.6052/j.issn.1000-4750.2017.09.0743

可更换延性耗能连接组件的钢框架节点抗震性能研究

基金项目: 国家自然科学基金项目(51778042);北京市自然科学基金项目(8182042)
详细信息
    作者简介:

    柯小刚(1994-),男,湖北人,硕士生,从事钢结构抗震研究(E-mail:16121044@bjtu.edu.cn);吴照章(1986-),女,吉林人,工程师,硕士,从事钢结构研究(E-mail:269880858@qq.com).

    通讯作者:

    王萌(1985-),女,黑龙江人,副教授,博士,从事钢结构抗震研究(E-mail:wangmeng1117@gmail.com).

  • 中图分类号: TU391

SEISMIC BEHAVIOR OF STEEL FRAME CONNECTIONS WITH REPLACEABLE HIGH DUCTILITY AND ENERGY DISSIPATION COMPONENTS

  • 摘要: 为满足高烈度、高人口密度地区对高延性和高耗能能力装配式钢结构的迫切需求,采用高性能低屈服点钢材代替传统钢材来制作钢框架节点连接组件,利用高强度螺栓与主体结构连接,实现预制装配功能、"延性耗能保险丝"功能、震后可更换功能的叠加。采用通用有限元软件ABAQUS建立非线性全接触有限元模型,结合国内外已有的钢框架全螺栓连接节点循环加载试验,验证建立的数值模型对模拟局部屈曲以及螺栓滑移现象的准确性。在此基础上,通过建立三类典型带连接组件的全螺栓连接钢框架节点数值模型,采用三种不同材料LYP100、LYP160和Q235制作连接组件,对比其承载性能、滞回行为、累积塑性应变以及耗能能力等,深入探讨采用低屈服点钢材连接组件钢框架节点的工作机理。结果表明:连接组件采用低屈服点钢材,可改变节点破坏模式,使塑性累积变形主要集中在连接组件上,耗散大部分能量(90%左右),避免主体结构过早进入塑性阶段,有效发挥"延性耗能保险丝"作用;带低屈服点钢材连接组件节点的耗能能力高于带普通钢材连接组件的节点;当节点转角达到0.045 rad时,低屈服点钢材连接组件的最大伸长率远小于低屈服点钢材极限强度所对应的应变,说明连接组件仍具有较大的变形空间,不会发生提早断裂破坏,有效提高节点延性。
    Abstract: In order to satisfy the urgent requirement of assembled steel structures with high ductility and energy dissipation capacity for the areas with high seismic intensity and population density, high performance low yield point steel is used for the connecting components of steel frame connections instead of ordinary steel. Then, the combination of prefabricated assembly function, ‘ductile energy dissipation fuse’ function and post-earthquake replaceable function is achieved with utilizing high-strength bolts. The non-linear finite element model of ABAQUS proves to be correct in simulating local buckling and bolt slipping phenomena based on published steel frame bolted connection tests at home and abroad. Based on this method, three types of bolted steel frame connections with connecting components using three different materials LYP100, LYP160 and Q235 were established. Their load-carrying capacity, hysteretic behaviour, cumulative plastic strain and energy dissipation capacity were compared, and the mechanism of connections with low yield point steel components was discussed. The results showed that using low yield point steel connecting components could change the failure mode of connections, make the plastic cumulative deformation mainly concentrate in connecting components, dissipate most of energy (around 90%), avoid the main frame encountering plasticity too early and effectively play a role of "ductile and energy dissipation fuse". The energy dissipation capacity of connections with low yield point steel components was higher than that of connections with ordinary steel components. When the rotation of connections reached 0.045 rad, the maximum elongation of low yield point steel components was much smaller than limit value, indicating that the components still had deformation capacity without premature fracture damage, which effectively improved the ductility of connections.
  • [1] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13. Hao Jiping, Sun Xiaoling, Xue Qiang, et al. Research and applications of prefabricated steel structure building systems[J]. Engineering Mechanics, 2017, 34(1):1-13. (in Chinese)
    [2] 沈祖炎, 罗金辉, 李元齐. 以钢结构建筑为抓手推动建筑行业绿色化、工业化、信息化协调发展[J]. 建筑钢结构进展, 2016, 18(2):1-6. Shen Zuyan, Luo Jinhui, Li Yuanqi. Discussion on coordinated development of greenization, industrialization and informatization with steel buildings as objects in construction industry[J]. Progress in Steel Building Structures, 2016, 18(2):1-6. (in Chinese)
    [3] 张爱林. 工业化装配式高层钢结构体系创新、标准规范编制及产业化关键问题[J]. 工业建筑, 2014, 44(8):1-6. Zhang Ailin. The key issues of system innovation, drawing up standard and industrialization for modularized prefabricated high-rise steel structures[J]. Industrial Construction, 2014, 44(8):1-6. (in Chinese)
    [4] 叶之皓. 我国装配式钢结构住宅现状及对策研究[D]. 南昌:南昌大学, 2012. Ye Zhihao. Study on present situation and countermeasure of the domestic prefabricated steel structure[D]. Nanchang:Nanchang University, 2012. (in Chinese)
    [5] Dao T N, van de Lindt J W. Seismic performance of an innovative light-gauge cold-formed steel mid-rise building[C]//Chicago, Illinois, United States:Structures Congress, 2012:1496-1506.
    [6] Serrette R. Seismic design strength of cold-formed steel framed shear walls[J]. Journal of Structural Engineering, 2010, 136(9):1123-1130.
    [7] 侯和涛, 吕忠珑, 周健, 等. 预制装配式钢框架结构体系的设计及经济性分析[J]. 钢结构, 2014, 29(1):20-24. Hou Hetao, Lü Zhonglong, Zhou Jian, et al. Design and economic analysis of PK assembled steel frame structure system[J]. Steel Construction, 2014, 29(1):20-24. (in Chinese)
    [8] 杨俊芬, 陈雷, 程锦鹏, 等. 一种新型装配式梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(12):75-86. Yang Junfen, Chen Lei, Cheng Jinpeng, et al. Experimental study on seismic behavior of a new type of fully assembled beam-column joints[J]. Engineering Mechanics, 2017, 34(12):75-86. (in Chinese)
    [9] Yang C M, Kim Y M. Cyclic behavior of bolted and welded beam-to-column joints[J]. International Journal of Mechanical Sciences, 2007, 49(5):635-649.
    [10] Brunesi E, Nascimbene R, Rassati G A. Response of partially-restrained bolted beam-to-column connections under cyclic loads[J]. Journal of Constructional Steel Research, 2014, 97:24-38.
    [11] Sofias C E, Kalfas C N, Pachoumis D T. Experimental and FEM analysis of reduced beam section moment endplate connections under cyclic loading[J]. Engineering Structures, 2014, 59:320-329.
    [12] 马人乐, 杨阳, 陈桥生, 等. 长圆孔变型性高强螺栓节点抗震性能试验研究[J]. 建筑结构学报, 2009, 30(1):101-106. Ma Renle, Yang Yang, Chen Qiaosheng, et al. Seismic performance testing study on high strength bolt connections with slotted holes[J]. Journal of Building Structures, 2009, 30(1):101-106. (in Chinese)
    [13] Iannone F, Latour M, Piluso V, et al. Experimental analysis of bolted steel beam-to-column connections:component identification[J]. Journal of Earthquake Engineering, 2011, 15(2):214-244.
    [14] 李泽深, 李秀梅, 郑小伟, 等. T形钢连接梁柱半刚性节点滞回性能试验研究及数值分析[J]. 建筑结构学报, 2014, 35(7):61-68. Li Zeshen, Li Xiumei, Zheng Xiaowei, et al. Experimental study and numerical investigation on hysteretic behavior of T-stub semi-rigid beam-to-column connections[J]. Journal of Building Structures, 2014, 35(7):61-68. (in Chinese)
    [15] 徐树全. 钢框架梁柱铸钢件连接节点性能试验研究[D]. 哈尔滨:哈尔滨工业大学, 2010. Xu Shuquan. Experimental research on performance of beam-column steel casting connections of steel frame[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
    [16] 陈以一, 贺修樟, 柯珂, 等. 可更换损伤元结构的特征与关键技术[J]. 建筑结构学报, 2016, 37(2):1-10. Chen Yiyi, He Xiuzhang, Ke Ke, et al. Characteristics and technical issues on structural systems with replaceable damage-concentrated elements[J]. Journal of Building Structures, 2016, 37(2):1-10. (in Chinese)
    [17] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 34(1):27-36. Lv Xilin, Chen Cong. Research progress in structural systems with replaceable members[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):27-36. (in Chinese)
    [18] Shoeibi S, Kafi M A, Gholhaki M. New performance-based seismic design method for structures with structural fuse system[J]. Engineering Structures, 2017, 132:745-760.
    [19] Dougka G, Dimakogianni D, Vayas I. Innovative energy dissipation systems (FUSEIS 1-1):Experimental analysis[J]. Journal of Constructional Steel Research, 2014, 96:69-80.
    [20] Mansour N, Shen Y, Christopoulos C, et al. Experimental evaluation of nonlinear replaceable links in eccentrically braced frames and moment resisting frames[C]//The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17, 2008.
    [21] Calado L, Proença J M, Espinha M, et al. Hysteretic behaviour of dissipative bolted fuses for earthquake resistant steel frames[J]. Journal of Constructional Steel Research, 2013, 85:151-162.
    [22] Castiglioni C A, Kanyilmaz A, Calado L. Experimental analysis of seismic resistant composite steel frames with dissipative devices[J]. Journal of Constructional Steel Research, 2012, 76:1-12.
    [23] 胡阳阳, 林旭川, 吴开来, 等. 带"保险丝"连接板的焊接高强钢梁柱节点抗震性能试验研究[C]//全国结构工程学术会议, 2016. Hu Yangyang, Lin Xuchuan, Wu Kailai, et al. Cyclic test on high-strength steel beam-to-column connections with damage-control fuses[C]//National Conference on Structural Engineering, 2016. (in Chinese)
    [24] 王萌, 钱凤霞, 杨维国, 等. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2):60-68. Wang Meng, Qian Fengxia, Yang Weiguo, et al. Comparison study on constitutive relationship of low yield point steels, Q345B steel and Q460D steel[J]. Engineering Mechanics, 2017, 34(2):60-68. (in Chinese)
    [25] 王萌, 钱凤霞, 杨维国. 低屈服点LYP160钢材本构关系研究[J]. 建筑结构学报, 2017, 38(2):55-62. Wang Meng, Qian Fengxia, Yang Weiguo. Constitutive behavior of low yield point steel LYP160[J]. Journal of Building Structures, 2017, 38(2):55-62. (in Chinese)
    [26] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [27] GB 50017-2003, 钢结构设计规范[S]. 北京:中国计划出版社, 2003. GB 50017-2003, Code for design of steel structures[S]. Beijing:China Planning Press, 2003. (in Chinese)
    [28] JGJ 82-2011, 钢结构高强度螺栓连接技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 82-2011, Technical specification for high strength bolt connections of steel structures:[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
    [29] 石永久, 王萌, 王元清, 等. 钢框架端板连接半刚性节点受力性能分析[J]. 工程力学, 2011, 28(9):51-58. Shi Yongjiu, Wang Meng, Wang yuanqing, et al. Analysis on the behavior of steel frame end-plate connections[J]. Engineering Mechanics, 2011, 28(9):51-58. (in Chinese)
    [30] Chaboche J L. Time independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2):149-188.
    [31] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3):293-300. Shi Yongjiu, Wang Meng, Wang Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Material, 2012, 15(3):293-300. (in Chinese)
    [32] FEMA-267A. Interim guideline:advisory No.1, supplement to federal emergence management agency[S]. Rep. SAC-96-03, SAC Joint Venture, Sacramento, California, 1997.
    [33] JGJ 101-96, 建筑抗震试验方法规程[S]. 北京:中国建筑工业出版社, 1991. JGJ 101-96, Specificating of testing methods for earthquake resistant building[S]. Beijing:China Architecture & Building Press, 1991. (in Chinese)
  • 期刊类型引用(6)

    1. 黄泽华,朱尚清,荚瑞馨,孙嘉辉,龙金喜,蔡刚. 纤维增强复合材料(FRP)配筋混凝土结构研究综述. 市政技术. 2024(06): 160-173 . 百度学术
    2. 梁文辉. 不同钢纤维掺量的大体积钢筋混凝土梁弯曲疲劳性能研究. 四川水泥. 2024(06): 27-29 . 百度学术
    3. 陈晟晟,周春恒,章子华. GFRP筋混杂纤维混凝土隧道管片力学性能研究. 工程力学. 2024(S1): 238-244+252 . 本站查看
    4. 马国兴,朱清亮,何文格,韦衍韬. 某桥主梁开裂后荷载试验评估与维修. 城市道桥与防洪. 2024(08): 174-177+22 . 百度学术
    5. 张丰宇,何佰昭,吴应雄,金捷,陈伟恩. CFRP板加固既有石楼板抗弯性能试验研究. 工程力学. 2024(12): 138-149 . 本站查看
    6. 彭书海 ,蔡永生 ,郑茗予 . 大跨预应力混凝土楼盖施工技术. 建筑技术开发. 2023(06): 51-53 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  637
  • HTML全文浏览量:  82
  • PDF下载量:  147
  • 被引次数: 13
出版历程
  • 收稿日期:  2017-09-28
  • 修回日期:  2018-03-01
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回