[1] |
Allen A M, Bogy D B. Effects of shock on the head-disk interface[J]. IEEE Transactions on Magnetics, 1996, 32(5):3717-3719.
|
[2] |
Murthy A N, Feliss B, Gillis D, et al. Experimental and numerical investigation of shock response in 3.5 and 2.5 in. form factor hard disk drives[J]. Microsystem Technologies, 2006, 12(12):1109-1116.
|
[3] |
Jang G H, Seo C H. Finite-element shock analysis of an operating hard disk drive considering the flexibility of a spinning disk-pindle, a head-suspension-actuator, and a supporting structure[J]. IEEE Transactions on Magnetics, 2007, 43(9):3738-3743.
|
[4] |
Liu M J, Yap F F, Harmoko H. Shock response analysis of hard disk drive using flexible multibody dynamics formulation[J]. Microsystem Technologies, 2007, 13(8/9/10):1039-1045.
|
[5] |
Shi B J, Li H Q, Shu D W, et al. Nonlinear air-bearing slider modeling for hard disk drives with ultra-low flying heights[J]. Communications in Numerical Methods in Engineering, 2009, 25(10):1041-1054.
|
[6] |
Luo J, Shu D W, Shi B J, et al. Pulse width effect on the shock response of the hard disk drive[J]. Journal of Magnetism and Magnetic Materials, 2007, 34(8):1342-1349.
|
[7] |
Dai X, Zhang J, Shen S, et al. Study of formation and development of lubricant bridge in head-disk interface using molecular dynamic method[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-4.
|
[8] |
McDaniel T W. Application of updated Landau-LifshitzBloch equations to heat-assisted magnetic recording[J]. IEEE Transactions on Magnetics, 2018, 54(2):1-11.
|
[9] |
Obukhov Y, Jubert P O, Bedau D, et al. 2-D decoding algorithms and recording techniques for bit patterned media feasibility demonstrations[J]. IEEE Transactions on Magnetics, 2016, 52(2):.1-9.
|
[10] |
Albrecht T R, Arora H, Ayanoor-Vitikkate V, et al. Bit-patterned magnetic recording:theory, media fabrication, and recording performance[J]. IEEE Transactions on Magnetics, 2015, 51(5):1-42.
|
[11] |
Hanchi J, Sonda P, Crone R. Dynamic fly performance of air bearing sliders on patterned media[J]. IEEE Transactions on Magnetics, 2010, 47(1):46-50.
|
[12] |
Li L, Bogy D B. Air bearing dynamic stability on bit patterned media disks[J]. Microsystem Technologies, 2013, 19(9/10):1401-1406.
|
[13] |
Dai X, Li H, Shen S, et al. Numerical simulation of bearing force over bit-patterned media using 3-D DSMC method[J]. IEEE Transactions on Magnetics, 2015, 51(11):1-4.
|
[14] |
Dai X, Li H, Shen S, et al. Study of perfluoropolyether lubricant consumption and recovery in heat assisted magnetic recording using molecular dynamics simulation method[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-6.
|
[15] |
Fukui S, Sato A, Matsuoka H. Static and dynamic flying characteristics of a slider on bit-patterned media (dynamic responses based on frequency domain analysis)[J]. Microsystem Technologies, 2012, 18(9/10):1633-1643.
|
[16] |
Cui F, Li H, Shen S, et al. Simulation of air flow and particle trajectories in the head-disk interface[J]. IEEE Transactions on Magnetics, 2016, 52(12):1-5.
|
[17] |
姚华平. 超薄磁头/磁盘气膜动态润滑特性分析[D]. 广州:华南理工大学, 2009. Yao Huaping. Study on the dynamic lubrication characteristics of the ultra thin gas film in hard disk drive[D]. Guangzhou:South China University of Technology, 2009. (in Chinese)
|
[18] |
史宝军, 季家东, 杨廷毅. 粗糙度模式对硬盘气膜承载特性的影响[J]. 工程力学, 2012, 29(8):313-318. Shi Baojun, Ji Jiadong, Yang Tingyi. Effects of surface roughness modes on load carrying characteristics of air bearing films in hard disk drives[J]. Engineering Mechanics, 2012, 29(8):313-318. (in Chinese)
|
[19] |
史宝军, 季家东, 杨廷毅. 表面粗糙度对硬盘超低飞高气膜静态特性的影响[J]. 机械工程学报, 2011, 47(11):93-99. Shi Baojun, Ji Jiadong, Yang Tingyi. Effects of surface roughness on static characteristics of air bearing films in hard disk drives with ultra-low flying heights[J]. Journal of Mechanical Engineering, 2011, 47(11):93-99. (in Chinese)
|
[20] |
Song N H, Meng Y G, Lin J. Flying-height measurement with a symmetrical common-path heterodyne interferometry method[J]. IEEE Transactions on Magnetics, 2010, 46(3):928-932.
|
[21] |
王希超. 涉及气体稀薄效应的磁头磁盘空气轴承动力学特性分析[D]. 哈尔滨:哈尔滨工业大学, 2013. Wang Xichao. Analysis of air bearing dynamic characteristics involved the gas rarefaction effect[D]. Haerbin:Harbin Institute of Technology, 2013. (in Chinese)
|
[22] |
Shi B J, Yang T Y. Simplified model of Reynolds equation with linearized flow rate for ultra-thin gas film lubrication in hard disk drives[J]. Microsystem Technologies, 2010, 16(10):1727-1734.
|
[23] |
白雪, 史宝军, 贺磊, 等. 头/盘界面均匀化Reynolds方程及其高效数值求解[J]. 工程力学, 2017, 34(8):25-30, 50. Bai Xue, Shi Baojun, He Lei, et al. Averaged Reynolds equation and its efficient numerical solution in the head/disk interface[J]. Engineering Mechanics, 2017, 34(8):25-30, 50. (in Chinese)
|
[24] |
Yang T Y, Shi B J, Ge P Q, et al. Adaptive grid generation technique of sub-5 nm flying height air bearing slider with clearance discontinuities[J]. Microsystem Technologies, 2012, 18(12):2017-2026.
|
[25] |
郭影, 姜忻良, 曹东波, 等. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7):139-149. Guo Ying, Jiang Xinliang, Cao Dongbo, et al. A finite volume numerical simulation method for rock mass strength weakening by seepage water absorbing[J]. Engineering Mechanics, 2018, 35(7):139-149. (in Chinese)
|