摄动法研究硬盘磁头滑块动态飞行特性

杨廷毅, 白雪

杨廷毅, 白雪. 摄动法研究硬盘磁头滑块动态飞行特性[J]. 工程力学, 2018, 35(11): 223-231. DOI: 10.6052/j.issn.1000-4750.2017.08.0665
引用本文: 杨廷毅, 白雪. 摄动法研究硬盘磁头滑块动态飞行特性[J]. 工程力学, 2018, 35(11): 223-231. DOI: 10.6052/j.issn.1000-4750.2017.08.0665
YANG Ting-yi, BAI Xue. STUDY ON DYNAMICAL FLYING CHARACTERISTICS OF SLDIER IN HARD DISK DRIVES BY PERTURBATION METHOND[J]. Engineering Mechanics, 2018, 35(11): 223-231. DOI: 10.6052/j.issn.1000-4750.2017.08.0665
Citation: YANG Ting-yi, BAI Xue. STUDY ON DYNAMICAL FLYING CHARACTERISTICS OF SLDIER IN HARD DISK DRIVES BY PERTURBATION METHOND[J]. Engineering Mechanics, 2018, 35(11): 223-231. DOI: 10.6052/j.issn.1000-4750.2017.08.0665

摄动法研究硬盘磁头滑块动态飞行特性

基金项目: 国家自然科学基金项目(51505262)
详细信息
    作者简介:

    白雪(1982-),女,山东人,讲师,博士,从事纳米间隙润滑、数值计算方法、先进制造技术理论和工艺研究(E-mail:xuebai2014@sdut.edu.cn).

    通讯作者:

    杨廷毅(1980-),男,贵州人,讲师,博士,硕导,从事纳米间隙气膜润滑理论、计算方法研究(E-mail:tingyiyang@126.com).

  • 中图分类号: TH123

STUDY ON DYNAMICAL FLYING CHARACTERISTICS OF SLDIER IN HARD DISK DRIVES BY PERTURBATION METHOND

  • 摘要: 硬盘工作时,磁头滑块飞行在磁盘上方,其动态飞行特性对硬盘工作性能有重要影响。该文利用摄动法推导了磁头滑块的气膜刚度和阻尼摄动方程,且通过有限体积法进行求解,获得了初始摄动条件下的气膜刚度和阻尼矩阵。结合磁头滑块动力学方程,研究了扰动速度、扰动俯仰角和扰动侧倾角对磁头滑块动态飞行特性的影响。研究结果表明:①扰动速度会导致磁头滑块向磁盘表面作竖直方向的移动,增加了与磁盘接触碰撞的风险;②扰动俯仰角或侧倾角的增加都会导致磁头滑块振动幅度的增加,但扰动俯仰角更容易引起磁头滑块的振动。
    Abstract: In an operational hard disk drive (HDD), a slider is flying over a rotational disk and the dynamical flying characteristics of the slider have important effects on the performance of the HDD. By using the perturbation method, the perturbation equations for the gas film stiffness and gas film damping of the slider are derived, and the perturbation equations are numerically solved by the finite volume method (FVM). The gas film stiffness matrix and gas film damping matrix are obtained with an initial perturbation condition. Based on the dynamical equation of the slider, the effects of disturbance velocities, disturbance pitch angles and disturbance roll angles on the dynamical flying characteristics of the slider, are studied. The study results show that the perturbation velocities can cause the slider to move toward the disk, which increases the collision risk of the slider with the disk. The increases of disturbance pitch angles and disturbance roll angles will increase the vibration amplitudes of the flying parameters for the slider, and the disturbance angles are more likely to cause the vibration of the slider.
  • [1] Allen A M, Bogy D B. Effects of shock on the head-disk interface[J]. IEEE Transactions on Magnetics, 1996, 32(5):3717-3719.
    [2] Murthy A N, Feliss B, Gillis D, et al. Experimental and numerical investigation of shock response in 3.5 and 2.5 in. form factor hard disk drives[J]. Microsystem Technologies, 2006, 12(12):1109-1116.
    [3] Jang G H, Seo C H. Finite-element shock analysis of an operating hard disk drive considering the flexibility of a spinning disk-pindle, a head-suspension-actuator, and a supporting structure[J]. IEEE Transactions on Magnetics, 2007, 43(9):3738-3743.
    [4] Liu M J, Yap F F, Harmoko H. Shock response analysis of hard disk drive using flexible multibody dynamics formulation[J]. Microsystem Technologies, 2007, 13(8/9/10):1039-1045.
    [5] Shi B J, Li H Q, Shu D W, et al. Nonlinear air-bearing slider modeling for hard disk drives with ultra-low flying heights[J]. Communications in Numerical Methods in Engineering, 2009, 25(10):1041-1054.
    [6] Luo J, Shu D W, Shi B J, et al. Pulse width effect on the shock response of the hard disk drive[J]. Journal of Magnetism and Magnetic Materials, 2007, 34(8):1342-1349.
    [7] Dai X, Zhang J, Shen S, et al. Study of formation and development of lubricant bridge in head-disk interface using molecular dynamic method[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-4.
    [8] McDaniel T W. Application of updated Landau-LifshitzBloch equations to heat-assisted magnetic recording[J]. IEEE Transactions on Magnetics, 2018, 54(2):1-11.
    [9] Obukhov Y, Jubert P O, Bedau D, et al. 2-D decoding algorithms and recording techniques for bit patterned media feasibility demonstrations[J]. IEEE Transactions on Magnetics, 2016, 52(2):.1-9.
    [10] Albrecht T R, Arora H, Ayanoor-Vitikkate V, et al. Bit-patterned magnetic recording:theory, media fabrication, and recording performance[J]. IEEE Transactions on Magnetics, 2015, 51(5):1-42.
    [11] Hanchi J, Sonda P, Crone R. Dynamic fly performance of air bearing sliders on patterned media[J]. IEEE Transactions on Magnetics, 2010, 47(1):46-50.
    [12] Li L, Bogy D B. Air bearing dynamic stability on bit patterned media disks[J]. Microsystem Technologies, 2013, 19(9/10):1401-1406.
    [13] Dai X, Li H, Shen S, et al. Numerical simulation of bearing force over bit-patterned media using 3-D DSMC method[J]. IEEE Transactions on Magnetics, 2015, 51(11):1-4.
    [14] Dai X, Li H, Shen S, et al. Study of perfluoropolyether lubricant consumption and recovery in heat assisted magnetic recording using molecular dynamics simulation method[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-6.
    [15] Fukui S, Sato A, Matsuoka H. Static and dynamic flying characteristics of a slider on bit-patterned media (dynamic responses based on frequency domain analysis)[J]. Microsystem Technologies, 2012, 18(9/10):1633-1643.
    [16] Cui F, Li H, Shen S, et al. Simulation of air flow and particle trajectories in the head-disk interface[J]. IEEE Transactions on Magnetics, 2016, 52(12):1-5.
    [17] 姚华平. 超薄磁头/磁盘气膜动态润滑特性分析[D]. 广州:华南理工大学, 2009. Yao Huaping. Study on the dynamic lubrication characteristics of the ultra thin gas film in hard disk drive[D]. Guangzhou:South China University of Technology, 2009. (in Chinese)
    [18] 史宝军, 季家东, 杨廷毅. 粗糙度模式对硬盘气膜承载特性的影响[J]. 工程力学, 2012, 29(8):313-318. Shi Baojun, Ji Jiadong, Yang Tingyi. Effects of surface roughness modes on load carrying characteristics of air bearing films in hard disk drives[J]. Engineering Mechanics, 2012, 29(8):313-318. (in Chinese)
    [19] 史宝军, 季家东, 杨廷毅. 表面粗糙度对硬盘超低飞高气膜静态特性的影响[J]. 机械工程学报, 2011, 47(11):93-99. Shi Baojun, Ji Jiadong, Yang Tingyi. Effects of surface roughness on static characteristics of air bearing films in hard disk drives with ultra-low flying heights[J]. Journal of Mechanical Engineering, 2011, 47(11):93-99. (in Chinese)
    [20] Song N H, Meng Y G, Lin J. Flying-height measurement with a symmetrical common-path heterodyne interferometry method[J]. IEEE Transactions on Magnetics, 2010, 46(3):928-932.
    [21] 王希超. 涉及气体稀薄效应的磁头磁盘空气轴承动力学特性分析[D]. 哈尔滨:哈尔滨工业大学, 2013. Wang Xichao. Analysis of air bearing dynamic characteristics involved the gas rarefaction effect[D]. Haerbin:Harbin Institute of Technology, 2013. (in Chinese)
    [22] Shi B J, Yang T Y. Simplified model of Reynolds equation with linearized flow rate for ultra-thin gas film lubrication in hard disk drives[J]. Microsystem Technologies, 2010, 16(10):1727-1734.
    [23] 白雪, 史宝军, 贺磊, 等. 头/盘界面均匀化Reynolds方程及其高效数值求解[J]. 工程力学, 2017, 34(8):25-30, 50. Bai Xue, Shi Baojun, He Lei, et al. Averaged Reynolds equation and its efficient numerical solution in the head/disk interface[J]. Engineering Mechanics, 2017, 34(8):25-30, 50. (in Chinese)
    [24] Yang T Y, Shi B J, Ge P Q, et al. Adaptive grid generation technique of sub-5 nm flying height air bearing slider with clearance discontinuities[J]. Microsystem Technologies, 2012, 18(12):2017-2026.
    [25] 郭影, 姜忻良, 曹东波, 等. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7):139-149. Guo Ying, Jiang Xinliang, Cao Dongbo, et al. A finite volume numerical simulation method for rock mass strength weakening by seepage water absorbing[J]. Engineering Mechanics, 2018, 35(7):139-149. (in Chinese)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  35
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2018-05-22
  • 刊出日期:  2018-11-28

目录

    /

    返回文章
    返回