BFRP筋与珊瑚混凝土粘结性能试验研究

杨超, 杨树桐, 戚德海

杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180. DOI: 10.6052/j.issn.1000-4750.2017.06.S034
引用本文: 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180. DOI: 10.6052/j.issn.1000-4750.2017.06.S034
YANG Chao, YANG Shu-tong, QI De-hai. Experimental study on the bond performance between BFRP bars and coral concrete[J]. Engineering Mechanics, 2018, 35(S1): 172-180. DOI: 10.6052/j.issn.1000-4750.2017.06.S034
Citation: YANG Chao, YANG Shu-tong, QI De-hai. Experimental study on the bond performance between BFRP bars and coral concrete[J]. Engineering Mechanics, 2018, 35(S1): 172-180. DOI: 10.6052/j.issn.1000-4750.2017.06.S034

BFRP筋与珊瑚混凝土粘结性能试验研究

基金项目: 国家自然科学基金项目(51378481);泰山玻璃纤维有限公司委托科技服务项目(20160290).
详细信息
    作者简介:

    杨超(1992-),男,河南人,硕士生,从事海洋珊瑚混凝土力学性能试验研究(E-mail:yc520520cy@163.com);戚德海(1967-),男,山东人,教授级高工,硕士,从事复合材料产品开发和应用技术研究(E-mail:ctg.qdh@ctgf.com)

    通讯作者:

    杨树桐(1979-),男,山东人,教授,博士,从事混凝土断裂力学、混凝土加固与锚固的理论与试验研究(E-mail:shutongyang2013@163.com).

  • 中图分类号: TU377.9

Experimental study on the bond performance between BFRP bars and coral concrete

  • 摘要: 为研究玄武岩纤维增强复合材料筋(BFRP筋)与珊瑚混凝土的粘结性能,对不同直径(d=8 mm、12 mm)、不同粘结长度(2.5 d、5.0 d与7.5 d)及不同养护环境(标准养护室养护、20±2℃人工海水养护)的共24个BFRP筋与珊瑚混凝土粘结锚固试件进行了中心拉拔试验。结果表明:除直径为12 mm,粘结长度为7.5 d的拉拔试件出现珊瑚混凝土劈裂破坏外,其余试件均为BFRP筋从珊瑚混凝土中拔出破坏,其破坏形态与BFRP筋和普通混凝土粘结破坏形态无明显区别,只是更易发生劈裂破坏。其粘结滑移曲线可分为微滑移阶段、滑移阶段、剥离阶段、下降阶段和残余阶段共5个阶段。其最大平均粘结应力随直径与粘结长度的增加显著减小。标准养护条件下的BFRP筋与珊瑚混凝土的粘结强度明显高于20±2℃人工海水养护下的粘结强度。
    Abstract: To study of the bond performance between BFRP bars and coral concrete, pull-out tests were carried out for 24 anchorage specimens with FRP bars of different diameters (d=8 mm and d=12 mm), different bonding lengths (2.5 d, 5.0 d and 7.5 d) and different curing conditions (standard curing room and artificial seawater immersion with the temperature of 20±2℃). The results show that all the specimens fail due to the pull-out of the BFRP bars from the concrete except the specimens with 12 mm diameter bars and a bonding length of 7.5 d, which is identified by splitting failure of the concrete. The failure mode is similar to that between BFRP bars and ordinary concrete, but the splitting failure occurs more easily for the bond between BFRP bars and coral concrete. The bond-slip curve can be divided into five stages, i.e., micro slip stage, sliding stage, stripping stage, declining stage and residual stage. With the increase of the diameter and bond length, the maximum average bond stress decreases markedly. Moreover, the bond strength of the specimens under standard curing conditions is apparently larger than that of specimens immersed in 20±2℃ artificial seawater.
  • [1] Narver D L. Good concrete made with coral and sea water[J]. Civil Engineering, 1954Part I(October):40-44. 1954 Part Ⅱ (November):49-52.
    [2] Dempsey, John G. Coral and salt water as concrete materials[J]. Journal of the American Concrete Institute, 1951, 10(48):157-166.
    [3] 靡人杰, 余红发, 麻海燕, 等. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程, 2016, 34(4):47-54. Mi Renjie, Yu Hongfa, Ma Haiyan et al. Study on the mechanical property of coral concrete[J]. The Ocean Enginering, 2016, 34(4):47-54. (in Chinese)
    [4] Rick A E. Coral concrete at bikini atoll[J].Concrete International, 1991, 1:19-24.
    [5] 胡乔, 阳涛, 王壮志, 等. FRP海水珊瑚混凝土与普通钢筋混凝土结构的全寿命周期成本比较[J]. 建筑经济, 2016, 37(1):61-66. Hu Qiao, Yang Tao, Wang Zhuangzhi, et al. Analysis of life cycle cost frp marine coral concrete structure and common reinforced concrete structure[J]. Construction Economy, 2016, 37(1):61-66. (in Chinese)
    [6] 李彪, 侯慕秩, 杨勇新, 等. 复材筋珊瑚骨料混凝土梁抗弯性能试验研究[J]. 工业建筑, 2016, 46(11):181-184. Li Biao, Hou Mutie, Yang Yongxin, et al. experiment study on the flexural behavior of coral aggregate concrete beam with frp[J]. Industrial Construction, 2016, 46(11):181-184. (in Chinese)
    [7] 王磊, 吴翔, 曾榕, 等. CFRP筋与珊瑚混凝土的黏结性能试验研究[J]. 中国农村水利水电, 2016, 7:127-131. Wang Lei, Wu Xiang, Zeng Rong, et al. Experimental research on bond performance between CFRP bars and the coral concrete[J]. China Rural and Water Hydropower, 2016, 7:127-131. (in Chinese)
    [8] Militky J, Kovacic V, Rubnerova. Influence of thermal treatment on tensile failure of basalt fibers[J]. Engineering Fracture Mechanics, 2002, 69:1025-1033.
    [9] Palmieri A, Matthys S, Tierens M. Basalt fibers mechanical properties and applications for concrete structures[C]. London:Concrete Solutions:Proceedings of the International Conference on Concrete Solutions, 2009:165-169.
    [10] Wu Z S, Wang X, Iwashita K, Sasaki T, et al. Tensile fatigue behavior of FRP and hybrid FRP sheets[J], Composites Part B:Engineering, 2010, 41(5):396-402.
    [11] 郭恒宁, 张继文. FRP筋混凝土粘结滑移模型的研究和试验分析[J]. 玻璃钢/复合材料, 2007, 2:21-24. Guo Hengning, Zhang Jiwen. study and expermental analysis of constitutne relation models for bondding and sliding between FRP tendons and concrete[J]. FRP/CM, 2007, 2:21-24. (in Chinese)
    [12] 薛伟辰, 刘华杰, 王晓辉. 新型FRP筋粘结性能研究[J]. 建筑结构学报, 2004, 25(2):104-109. Xue Weichen, Liu Huajie, Wang Xiaohui. Studies on bond properties of new-type FRP bars[J]. Journal of Building Structures, 2004, 25(2):104-109. (in Chinese)
    [13] Ahmed EI Refai, Mohamed-Amine Ammar, Radhouane Masmoudi. Bond performance of basalt fiber-reinforced polymer bars to concrete[J]. Journal of Composites for Construction, 2015, 19(3):1-12.
    [14] Benmokrane B, Tighiouart B, Chaallal O. Bond strength and load distribution of composite GFRP reinforcing bars in concrete[J]. Journal of the American Concrete Institute, 1996, 93(3):246-253.
    [15] Cosenza E, Manfredi G, Realtonzo R. Behavior and modeling of bond of FRP rebars to concrete[J]. Compos. Constr. 1997, 12(40):40-51.
    [16] Tighiouart B, Benmokrane B, Gao D. Investigation of concrete member with fiber reinforced polymer (FRP) bars[J]. Constr. Build. Mater., 1998, 12(8):453-462.
    [17] Achillides Z, Pilakoutas K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction, 2004, 8:2(173):173-181.
    [18] 郝庆多, 王言磊, 侯吉林, 等. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10):158-165. Hao Qingduo, Wang Yanlei, Hou Jilin, et al. Experiment study on bond behavior of GFRP ribbed rebars[J]. Engineering Mechanics, 2008, 25(10):158-165. (in Chinese)
    [19] Arias J P M, Vazquez A, Escobar M. Use of sand coating to improve bonding between GFRP bars and concrete[J]. Journal of Composites for Construction, 2012, 46(18):2271-2278.
    [20] Sayed A F, Foret G, Le Roy R. Bond between carbon fiber-reinforced polymer (CFRP) bars and ultra high performance fiber reinforced concrete (UHPFRC):Experimental study[J]. Construction and Building Materials, 2011, 25(2):479-485.
    [21] Dong Z Q, Wu G, Xu B, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction[J]. Material and Design, 2016, 92:552-562.
    [22] Ahmed EI Refai, Farid Abed. Bond durability of basalt fiber-reinforced polymer bar embedded in concrete under direct pullout conditions[J]. Journal of Composites for Construction, 2015, 19(5):1-11.
    [23] ASTM, Standard practice for the preparation of substitute ocean water, D1141-98[S]. ASTM International, West Conshohocken, PA, 2008.
  • 期刊类型引用(22)

    1. 范冀峰,孙丽. 珊瑚混凝土改性技术研究. 江苏建材. 2024(02): 34-36 . 百度学术
    2. 陈爽,韦丽兰,陈红梅,关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能. 材料导报. 2024(09): 130-139 . 百度学术
    3. 尹世平,李雨珊,刘运超. FRP筋与全珊瑚骨料海水混凝土粘结性能数值模拟. 应用基础与工程科学学报. 2023(01): 210-223 . 百度学术
    4. 周春恒,王君义,王新堂,陈宗平. 高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究. 复合材料学报. 2023(04): 2224-2239 . 百度学术
    5. 李洪利,吴文娟. 珊瑚礁砂混凝土盐雾侵蚀试验研究. 土工基础. 2023(03): 539-544 . 百度学术
    6. 孟凡俊,陈万祥,孙航,王德荣,谢天星,范鹏贤. 带锚固端BFRP筋-混凝土的粘结性能试验与本构模型研究. 工程力学. 2023(07): 171-184 . 本站查看
    7. 武芳文,段钧淇,何岚清,梅韵歌,卞正容,张智举,刘来君,杨飞. PVA-ECC与BFRP筋黏结性能试验分析. 哈尔滨工业大学学报. 2023(07): 70-79 . 百度学术
    8. 贾晓光. 冻融循环作用下高强自密实混凝土抗冻耐久性研究. 工程技术研究. 2023(13): 118-122 . 百度学术
    9. 李雨珊,尹世平,刘运超. FRP筋与全珊瑚骨料海水混凝土界面粘结-滑移本构关系. 复合材料学报. 2022(08): 3950-3964 . 百度学术
    10. 袁鹏,陈万祥,郭志昆,王英杰,范鹏贤. 中低加载速率下BFRP筋-混凝土粘结性能研究. 工程力学. 2021(05): 131-142 . 本站查看
    11. 刘艳,黄洋洋,邓芃,黄一杰,代其磊. BFRP筋与纤维陶粒混凝土黏结性能试验. 中国科技论文. 2021(04): 408-414 . 百度学术
    12. 吴小勇,周凯,朱永帅,袁晓露. 冻融循环下BFRP筋与混凝土黏结强度试验研究. 建筑结构学报. 2021(S1): 442-447 . 百度学术
    13. 蔡新光,赵青,陈惠苏. 珊瑚混凝土研究现状. 硅酸盐学报. 2021(08): 1753-1764 . 百度学术
    14. 柴源,牛勇,李文杰,吕海波. 珊瑚骨料混凝土改性技术研究进展. 材料导报. 2021(15): 15134-15142 . 百度学术
    15. 陈红梅,刘玉涛,关纪文. BFRP筋增强珊瑚混凝土耐久性研究进展. 硅酸盐通报. 2021(11): 3544-3555 . 百度学术
    16. 商怀帅,邵姝文,袁守涛,冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究. 材料导报. 2021(S2): 228-235 . 百度学术
    17. 邓志恒,刘兵,盛军,温小艳,周敬凯. 珊瑚混凝土研究进展. 硅酸盐通报. 2020(04): 1026-1034+1042 . 百度学术
    18. 高傲,杨树桐,高广希,王秀英. 海洋环境下BFRP筋与珊瑚混凝土粘结性能的试验研究. 复合材料科学与工程. 2020(12): 43-53 . 百度学术
    19. 阿斯哈,周长东,邱意坤,梁立灿,张泳. 考虑位置函数的木材表面嵌筋粘结滑移本构关系. 工程力学. 2019(10): 134-143 . 本站查看
    20. 高超,董伟伟,陈杰,孙晓燕. BFRP筋与纤维混凝土粘结性能研究. 低温建筑技术. 2019(10): 19-22 . 百度学术
    21. 王凌旭,姚瑶,张有佳,赵鑫磊. 高压输电线路脱冰跳跃及脱冰准则的研究现状. 工业建筑. 2019(12): 1-6 . 百度学术
    22. 刘祥,贾彬,黄辉,廉杰,李佳静. 钢套筒约束下玄武岩复材筋的拉拔试验研究. 工业建筑. 2019(12): 138-144 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数:  362
  • HTML全文浏览量:  53
  • PDF下载量:  49
  • 被引次数: 48
出版历程
  • 收稿日期:  2017-06-05
  • 修回日期:  2017-11-19
  • 刊出日期:  2018-06-29

目录

    /

    返回文章
    返回