多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究

汪大洋, 韩启浩, 张永山

汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138. DOI: 10.6052/j.issn.1000-4750.2017.03.0195
引用本文: 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138. DOI: 10.6052/j.issn.1000-4750.2017.03.0195
WANG Da-yang, HAN Qi-hao, ZHANG Yong-shan. EXPERIMENTAL AND ANALYTICAL STUDY OF COMPOSITE STEEL PLATE SHEAR WALL WITH ASSEMBLED MULTI-CONCRETE SLAB[J]. Engineering Mechanics, 2018, 35(7): 83-93,138. DOI: 10.6052/j.issn.1000-4750.2017.03.0195
Citation: WANG Da-yang, HAN Qi-hao, ZHANG Yong-shan. EXPERIMENTAL AND ANALYTICAL STUDY OF COMPOSITE STEEL PLATE SHEAR WALL WITH ASSEMBLED MULTI-CONCRETE SLAB[J]. Engineering Mechanics, 2018, 35(7): 83-93,138. DOI: 10.6052/j.issn.1000-4750.2017.03.0195

多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究

基金项目: 国家自然科学基金项目(51408140,51378135);广东省优秀青年教师项目(Yq201402);广州市科技计划项目(201510010291,201607010151)
详细信息
    作者简介:

    汪大洋(1981-),男,安徽人,副教授,博士,主要从事结构减振控制研究(E-mail:wadaya2015@gzhu.edu.cn)张永山(1964-),男,黑龙江人,教授,博士,博导,主要从事结构分析与减震控制研究(E-mail:zhangys6411@163.com).

    通讯作者:

    韩启浩(1991-),男,江西人,博士生,主要从事钢结构抗震研究(E-mail:hanqihao06@163.com).

  • 中图分类号: TU398+.2

EXPERIMENTAL AND ANALYTICAL STUDY OF COMPOSITE STEEL PLATE SHEAR WALL WITH ASSEMBLED MULTI-CONCRETE SLAB

  • 摘要: 对竖向拼装组合钢板剪力墙、横向拼装组合钢板剪力墙及传统组合钢板剪力墙开展拟静力试验,对比分析各试件破坏特征、滞回性能、耗能能力、刚度退化及位移延性,采用ABAQUS软件建立数值模型并针对不同拼缝宽度、螺栓距厚比和混凝土板厚度的竖向拼装组合钢板剪力墙进行了参数影响研究。结果表明:混凝土板分块布置会一定程度地降低其耗能能力和抗侧刚度,但可以减少内藏钢板对边缘框架柱产生附加弯矩的不利影响;竖向拼装组合钢板剪力墙是一种抗震性能更为优越的抗侧力构件,竖向拼装组合钢板剪力墙的耗能能力是横向拼装组合钢板剪力墙的1.3倍,且竖向拼装组合钢板剪力墙刚度退化相对缓慢;为保证组合钢板剪力墙具有较好的抗侧能力,螺栓距厚比为100和125时,其拼缝宽度分别不宜大于48 mm和72 mm;混凝土板约束刚度足够情况下,螺栓距厚比不宜大于125。
    Abstract: The quasi-static test was carried out on composite steel plate shear wall with vertical assembling mode (V-CSPSW), composite steel plate shear wall with horizontal assembling mode (H-CSPSW) and traditional composite steel plate shear wall (CSPSW). The failure characteristic, hysteretic behavior, energy dissipation capability, displacement ductility, stiffness degradation and displacement ductility of the composite walls were analyzed. The numerical model was established by using ABAQUS, and a parametric study was then performed to study the effects of gap width, bolt spacing-to-steel thickness ratio and concrete slab thickness. The results show that the CSPSW assembled by multi-concrete slabs has lower lateral stiffness and energy dissipation capacity, but it can reduce the harmful effects of additional moment generated by the steel plate on frame columns. V-CSPSW is a lateral force resisting member possessing superior seismic performance, its energy dissipation capacity is 1.3 times of that the H-CSPSW has and its stiffness degradation is slower. In order to ensure the composite steel plate shear wall has good lateral resisting capacity, the gap width should be less than 48 mm and 72 mm if the bolt spacing-to-steel thickness ratio is 100 and 125, respectively. The bolt spacing-to-steel thickness ratio of the V-CSPSW should be less than 125 if the concrete slab possesses enough restraint stiffness.
  • [1] JGJ/T 380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2016. JGJ/T 380-2015, Technical specification for steel plate shear walls[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
    [2] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13. Hao Jiping, Sun Xiaoling, Xue Qiang, et al. Research and applications of prefabricated steel structure building systems[J]. Engineering Mechanics, 2017, 34(1):1-13. (in Chinese)
    [3] Dey S, Bhowmick A K. Seismic performance of composite plate shear walls[J]. Structures, 2016, 6:59-72.
    [4] Rahai A, Hatami F. Evaluation of composite shear wall behavior under cyclic loadings[J]. Journal of Constructional Steel Research, 2009, 65(7):1528-1537.
    [5] Arabzadeh A, Soltani M, Ayazi A. Experimental investigation of composite shear walls under shear loadings[J]. Thin Walled Structures, 2011, 49(7):842-854.
    [6] Guo L H, Li R, Rong Q, et al. Cyclic behavior of SPSW and CSPSW in composite frame[J]. Thin Walled Structures, 2012, 51:39-52.
    [7] 李国强, 张晓光, 沈祖炎. 钢板外包混凝土剪力墙抗剪滞回性能试验研究[J]. 工业建筑, 1995, 25(6):32-35. Li Guoqiang, Zhang Xiaoguang, Shen Zuyan. Experimental study on hysteretic behavior of concrete-incased steel plate shear walls[J]. Industrial Construction, 1995, 25(6):32-35. (in Chinese)
    [8] Zhao Q H. Experimental and analytical studies of cyclic behavior of steel and composite shear wall systems[D]. Berkeley:University of California, 2006.
    [9] Zhao Q H, Astaneh-Asl A. Cyclic behavior of traditional and innovative composite shear wall[J]. Journal of Structural Engineering(ASCE), 2004, 130(2):271-284.
    [10] Hitaka T, Matsui C, Tsuda K, et al. Elastic-plastic behavior of building steel frame incorporation steel bearing wall with slits[J]. Journal of Structural & Construction Engineering, 2000, 65(543):153-160.
    [11] Hitaka T, Matsui C. Experimental study on steel shear wall with slits[J]. Journal of Structural Engineering. 2003, 129(5):586-595.
    [12] 郭彦林, 董全利, 周明, 等. 防屈曲钢板剪力墙滞回性能理论与试验研究[J]. 建筑结构学报, 2009, 30(1):31-39. Guo Yanlin, Dong Quanli, Zhou Ming, et al. Tests and analysis on hysteretic behavior of buckling-restrained steel plate shear wall[J]. Journal of Building Structures, 2009, 30(1):31-39. (in Chinese)
    [13] 郭彦林, 周明, 董全利. 防屈曲钢板剪力墙弹塑性抗剪极限承载力与滞回性能研究[J]. 工程力学, 2009, 26(2):108-114. Guo Yanlin, Zhou Ming, Dong Quanli. Hysterestic behavior of buckling-restrained steel plate shear wall[J]. Engineering Mechanics, 2009, 26(2):108-114. (in Chinese)
    [14] 郭彦林, 周明, 董全利, 等. 三类钢板剪力墙结构试验研究[J]. 建筑结构学报, 2011, 32(1):17-29. Guo Yanlin, Zhou Ming, Dong Quanli, et al. Experimental study on three types of steel plate shear walls under cyclic loading[J]. Journal of Building Structures, 2011, 32(1):17-29. (in Chinese)
    [15] 郭兰慧, 戎芹, 马欣伯, 等. 两边连接钢板-混凝土组合剪力墙抗剪性能试验研究及有限元分析[J]. 建筑结构学报, 2012, 33(6):59-68. Guo Lanhui, Rong Qin, Ma Xinbo, et al. Experimental and analytical study of composite steel plate shear walls connected to frame beams only[J]. Journal of Building Structures, 2012, 33(6):59-68. (in Chinese)
    [16] 马欣伯. 两边连接钢板剪力墙及组合剪力墙抗震性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. Ma Xinbo. Seismic behavior of steel plate shear walls and composite shear walls with two-side connections[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
    [17] Guo L H, Rong Q, Ma X B. Analysis of composite steel plate shear walls connected with frame beams only[J]. Structures and Buildings, 2013, 166(9):507-518.
    [18] Guo L H, Ma X B, Li R. Experimental research on seismic behavior of C-SPSWs connected to frame beams[J]. Earthquake Engineering and Engineering Vibration, 2011, 10(1):65-73.
    [19] Guo L H, Rong Q, Qu B. Testing of steel plate shear walls with composite columns and infill plates connected to beams only[J]. Engineering Structures, 2017, 136:165-179.
    [20] 陆烨, 李国强, 孙飞飞. I形大高宽比屈曲约束钢板剪力墙的试验和理论研究[J]. 土木工程学报, 2011, 44(10):45-52. Lu Ye, LI Guoqiang, Sun Feifei. Experimental and theoretical study on slim I-shape buckling-restrained steel plate shear walls[J]. China Civil Engineering Journal, 2011, 44(10):45-52. (in Chinese)
    [21] 刘青, 李国强, 陆烨. 内嵌屈曲约束钢板剪力墙钢框架的性能参量及计算方法[J]. 工程力学, 2016, 33(10):105-115. Liu Qing, Li Guoqiang, Lu Ye. Mechanical properties and calculation of the buckling restrained steel plate shear walls embedded steel frame[J]. Engineering Mechanics, 2016, 33(10):105-115. (in Chinese)
    [22] 郭彦林, 董全利, 周明. 防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究[J]. 建筑结构学报, 2009, 30(1):40-47. Guo Yanlin, Dong Quanli, Zhou Ming. Elastic behavior and minimum restraining stiffness of buckling restrained steel plate shear wall[J]. Journal of Building Structures, 2009, 30(1):40-47. (in Chinese)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  45
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-13
  • 修回日期:  2017-07-31
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回