饱和层状地基条形基础动刚度的精细积分算法

李志远, 李建波, 林皋, 韩泽军

李志远, 李建波, 林皋, 韩泽军. 饱和层状地基条形基础动刚度的精细积分算法[J]. 工程力学, 2018, 35(6): 15-23. DOI: 10.6052/j.issn.1000-4750.2017.03.0170
引用本文: 李志远, 李建波, 林皋, 韩泽军. 饱和层状地基条形基础动刚度的精细积分算法[J]. 工程力学, 2018, 35(6): 15-23. DOI: 10.6052/j.issn.1000-4750.2017.03.0170
LI Zhi-yuan, LI Jian-bo, LIN Gao, HAN Zhe-jun. PRECISE INTEGRATION METHOD FOR DYNAMIC STIFFNESS OF STRIP FOUNDATION ON SATURATED POROELASTIC SOIL[J]. Engineering Mechanics, 2018, 35(6): 15-23. DOI: 10.6052/j.issn.1000-4750.2017.03.0170
Citation: LI Zhi-yuan, LI Jian-bo, LIN Gao, HAN Zhe-jun. PRECISE INTEGRATION METHOD FOR DYNAMIC STIFFNESS OF STRIP FOUNDATION ON SATURATED POROELASTIC SOIL[J]. Engineering Mechanics, 2018, 35(6): 15-23. DOI: 10.6052/j.issn.1000-4750.2017.03.0170

饱和层状地基条形基础动刚度的精细积分算法

基金项目: 国家自然科学基金项目(51138001);国家重点研发计划项目(2016YFB0201000)
详细信息
    作者简介:

    李志远(1990-),男,河北人,博士生,从事核电结构及水工结构抗震方面的研究(Email:zhiyuan1214@mail.dlut.edu.cn);林皋(1929-),男,江西人,教授,博士,院士,从事核电结构及水工结构抗震方面的研究(Email:gaolin@dlut.edu.cn).

    通讯作者:

    李建波(1979-),男,河北人,副教授,博士,从事核电结构及水工结构抗震方面的研究(E-mail:jianboli@dlut.edu.cn).

  • 中图分类号: TU435

PRECISE INTEGRATION METHOD FOR DYNAMIC STIFFNESS OF STRIP FOUNDATION ON SATURATED POROELASTIC SOIL

  • 摘要: 采用基于积分变换、对偶方程和精细积分的算法求解饱和多层地基条形基础的动刚度问题。利用Fourier积分变换得到Biot多孔饱和介质波动方程在频域-波数域内的常微分方程,引入广义对偶变量,对二阶常微分波动方程进行降阶处理;针对地表自由排水和封闭排水边界条件,给出了适于精细积分算法的矩阵表达;对控制方程采用精细积分解答,得到波数域内的格林函数,对结果进行逆Fourier积分变换,得到空间域的力和位移关系;施加边界条件,最终得到刚性条形基础的动刚度的解答。通过与文献已有结果进行对比,验证了精细积分算法的准确性。最后计算两组算例,分别分析了表面薄层的孔隙率、渗透力阻尼系数对条形基础动刚度的影响。
    Abstract: An approach based on integral transformation, dual form of wave motion equation and precise integration method (PIM) is presented to evaluate the dynamic stiffness of strip foundation resting on soils that are fluid-filled poroelastic. The two-phase behavior of the porous medium is represented according to Biot's theory. Fourier integral transform is used with respect to the x-co-ordinate, and the wave equations are reduced to ordinary ones. Considering the different contact conditions between the soil and foundation which are pervious or impervious, the PIM solution in the wave-number domain of the problems is achieved. With the aid of Inverse Fourier transforms of Green's function in the wave-number domain, the relationship between force and displacement in the physical domain is obtained. Finally, a numerical example is calculated to show that the proposed PIM can provide accurate results for solutions of dynamic stiffness of strip foundation. Besides, the technique can be applied to the computation of two groups of examples to analyze the influence of the porosity and seepage force.
  • [1] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2):168-178.
    [2] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. the Journal of the Acoustical Society of America, 1956, 28(2):179-191.
    [3] Paul S. On the displacements produced in a porous elastic half-space by an impulsive line load. (Nondissipative case)[J]. Pure and Applied Geophysics, 1976, 114(4):605-614.
    [4] Paul S. On the disturbance produced in a semi-infinite poroelastic medium by a surface load[J]. Pure and Applied Geophysics, 1976, 114(4):615-627.
    [5] Kassir M K, Jimin X. Interaction functions of a rigid strip bonded to saturated elastic half-space[J]. International Journal of Solids and Structures, 1988, 24(9):915-936.
    [6] Kassir M K, Xu J, Bandyopadyay K K. Rotatory and horizontal vibrations of a circular surface footing on a saturated elastic half-space[J]. International Journal of Solids and Structures, 1996, 33(2):265-281.
    [7] 金波. 多孔饱和半空间上弹性圆板垂直振动的积分方程[J]. 力学学报, 2000, 32(1):78-86. Jin Bo. Integral equations of vertical vibration of an elastic circular plane on a fluid-saturated poroelastic half space[J]. Chinese Journal of Theoretical and Applied Mechanics, 2000, 32(1):78-86. (in Chinese)
    [8] 张玉红, 黄义. 饱和土与结构动力相互作用分析[J]. 西安公路交通大学学报, 2000, 4:11-13,18. Zhang Yuhong, Huang Yi. Analysis of the dynamic interaction between saturated soil and structure[J]. Journal of Xi'an High Way University, 2000, 4:11-13,18. (in Chinese)
    [9] 陈胜立, 陈龙珠. 饱和地基上基础振动分析的计算方法[J]. 水利学报, 1999(9):57-62. Chen Shengli, Chen Longzhu. Computation method for foundation vibration on saturated soil[J]. Journal of Hydraulic Engineering, 1999(9):57-62. (in Chinese)
    [10] 付兵. 饱和地基上基础的摇摆振动特性研究[D]. 杭州:浙江大学, 2005. Fu Bing. Study on the rocking vibrations of foundations resting on saturated grouds[D]. Hangzhou:Zhejiang University, 2005. (in Chinese)
    [11] 马晓华, 蔡袁强, 徐长节. 饱和地基上条形弹性基础的摇摆振动[J]. 岩土力学, 2010, 31(7):2164-2172. Ma Xiaohua, Cai Yuanqiang, Xu Changjie. Rocking Vibration of an Elastic Strip Footing on Saturated Soil[J]. Rock and Soil Mechanics, 2010, 31(7):2164-2172. (in Chinese)
    [12] 张石平, 崔春义, 杨刚, 等. 基于Boer多孔介质理论的饱和半空间上刚性圆板基础竖向振动特性研究[J]. 工程力学, 2015, 32(10):145-153. Zhang Shiping, Cui Chunyi, Yang Gang. Study on vertical vibration characteristics of rigid circular plane on saturated half-space based on Boer's porous medium theory[J]. Engineering Mechanics, 2015, 32(10):145-153. (in Chinese)
    [13] Philippacopoulos A J. Waves in partially saturated medium due to surface loads[J]. Journal of Engineering Mechanics, 1988, 114(10):1740-1759.
    [14] Philippacopoulos A J. Axisymmetric vibration of disk resting on saturated layered half-space[J]. Journal of Engineering Mechanics, 1989, 115(10):2301-2322.
    [15] 杨峻, 吴世明, 陈云敏. 弹性层和饱和半空间体系稳定动力响应[J]. 土木工程学报, 1997, 30(3):39-48. Yang Jun, Wu Shiming, Chen Yunming. Steady state response of elastic soil layer and saturated layered half-space[J]. China Civil Engineering Journal, 1997, 30(3):39-48. (in Chinese)
    [16] Bougacha S, Tassoulas J L, Roësset J M. Analysis of foundations on fluid-filled poroelastic stratum[J]. Journal of Engineering Mechanics, 1993, 119(8):1632-1648.
    [17] Bougacha S, Roësset J M, Tassoulas J L. Dynamic stiffness of foundations on fluid-filled poroelastic stratum[J]. Journal of Engineering Mechanics, 1993, 119(8):1649-1662.
    [18] Lee J H, Kim J K, Tassoulas J L. Dynamic analysis of a poroelastic layered half-space using continued-fraction absorbing boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 263:81-98.
    [19] Rajapakse R, Senjuntichai T. Dynamic response of a multi-layered poroelastic medium[J]. Earthquake Engineering & Structural Dynamics, 1995, 24(5):703-722.
    [20] Liang J, Fu J, Todorovska M I, et al. In-plane soil-structure interaction in layered, fluid-saturated, poroelastic half-space I:Structural response[J]. Soil Dynamics and Earthquake Engineering, 2016, 81:84-111.
    [21] 陈少林, 赵宇昕. 一种三维饱和土-基础-结构动力相互作用分析方法[J]. 力学学报, 2016, 48(6):1362-1371. Chen Shao Lin, Zhao Yu Xin. A method for three-dimensional saturated soil-foundation-structure dynamic interaction analysis[J]. Chinese Journal of theoretical and Applied Mechanics, 2016, 48(6):1362-1371. (in Chinese)
    [22] 林皋, 韩泽军, 李建波. 层状地基任意形状刚性基础动力响应求解[J]. 力学学报, 2012, 46(6):1016-1027. Lin Gao, Han Ze Jun, Li Jian Bo. Solution of the dynamic response of rigid foundation of arbitrary shape on multi-layered soil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 46(6):1016-1027. (in Chinese)
    [23] 韩泽军, 林皋, 李建波. 二维层状地基格林函数的求解[J]. 土木工程学报, 2015, 48(10):99-107. Han Zejun, Lin Gao, Li Jianbo. The solution of Green's functions for two-dimensional layered ground[J]. China Civil Engineering Journal, 2015, 48(10):99-107(in Chinese)
    [24] Zhong W X, Lin J H, Gao Q. The precise computation for wave propagation in stratified materials[J]. International Journal for Numerical Methods in Engineering, 2004, 60(1):11-25.
    [25] 刘志军, 夏唐代, 黄睿, 等. Biot理论与修正的Biot理论比较及讨论[J]. 振动与冲击, 2015, 34(4):148-152. Liu Zhijun, Xia Tangdai, Huang Rui et al. Comparison and discussion for Biot theory and modified Biot one[J]. Journal of Vibration and Shock, 2015, 34(4):148-152. (in Chinese)
    [26] 周凤玺, 马强, 宋瑞霞. 含液饱和多孔二维梁的动力特性分析[J]. 工程力学, 2015, 32(5):198-207. Zhou Fengxi, Ma Qiang, Song Ruixia. Dynamic response analysis of a two dimensional fluid-saturated porous beam[J]. Engineering Mechanics, 2015, 32(5):198-207. (in Chinese)
    [27] 钟万勰. 应用力学的辛数学方法[M]. 北京:高等教育出版社, 2006. Zhong Wanxie. Symplectic solution methodology in applied mechnics[M]. Beijing:Higher Education Press, 2006. (in Chinese)
    [28] Japón B R, Gallego R, Domínguez J. Dynamic stiffness of foundations on saturated poroelastic soils[J]. Journal of Engineering Mechanics, 1997, 123(11):1121-1129.
  • 期刊类型引用(4)

    1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 . 本站查看
    2. 唐贞云,王志宇,杜修力. 时域稳定的基础频响连续有理近似参数识别方法. 工程力学. 2022(04): 29-38 . 本站查看
    3. 张帅,程晓辉,王天麟. 非等向固结砂土极小应变刚度的超弹性模型. 工程力学. 2020(01): 145-151 . 本站查看
    4. 巴振宁,张家玮,梁建文,吴孟桃. 地震波斜入射下层状TI饱和场地地震反应分析. 工程力学. 2020(05): 166-177 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  237
  • HTML全文浏览量:  14
  • PDF下载量:  47
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-03-04
  • 修回日期:  2017-07-12
  • 刊出日期:  2018-06-24

目录

    /

    返回文章
    返回