钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究

白亮, 谢鹏飞, 周天华, 张轶

白亮, 谢鹏飞, 周天华, 张轶. 钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究[J]. 工程力学, 2017, 34(11): 175-183. DOI: 10.6052/j.issn.1000-4750.2016.07.0551
引用本文: 白亮, 谢鹏飞, 周天华, 张轶. 钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究[J]. 工程力学, 2017, 34(11): 175-183. DOI: 10.6052/j.issn.1000-4750.2016.07.0551
BAI Liang, XIE Peng-fei, ZHOU Tian-hua, ZHANG Yi. STUDY ON DESIGN METHOD OF AXIAL FORCE-MOMENT CAPACITY AND SECTIONAL DEFORMATION CAPACITY OF STEEL TUBE CINFINED HIGH-STRENGTH CONCRETE SHEAR WALLS[J]. Engineering Mechanics, 2017, 34(11): 175-183. DOI: 10.6052/j.issn.1000-4750.2016.07.0551
Citation: BAI Liang, XIE Peng-fei, ZHOU Tian-hua, ZHANG Yi. STUDY ON DESIGN METHOD OF AXIAL FORCE-MOMENT CAPACITY AND SECTIONAL DEFORMATION CAPACITY OF STEEL TUBE CINFINED HIGH-STRENGTH CONCRETE SHEAR WALLS[J]. Engineering Mechanics, 2017, 34(11): 175-183. DOI: 10.6052/j.issn.1000-4750.2016.07.0551

钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究

基金项目: 国家自然科学基金项目(51208058);中央高校基本科研业务费(重点项目)(2013G2281016);陕西省自然科学基金项目(2014JM7294);陕西省协同创新计划项目(2015XT-38)
详细信息
    作者简介:

    谢鹏飞(1991―),男,山东菏泽人,硕士生,主要从事组合结构研究(E-mail:pengfeiguhun@163.com);周天华(1963―),男,陕西西乡人,教授,博士,主要从事轻钢结构、组合结构理论与工程应用研究(E-mail:zhouth@chd.edu.cn);张轶(1989―),男,陕西铜川人,硕士生,主要从事组合结构研究(E-mail:zhangyi_1988@126.com).

    通讯作者:

    白亮(1981―),男,陕西西安人,副教授,博士(后),主要从事钢与混凝土组合结构及抗震研究(E-mail:bailiang2000@aliyun.com).

  • 中图分类号: TU398+.2

STUDY ON DESIGN METHOD OF AXIAL FORCE-MOMENT CAPACITY AND SECTIONAL DEFORMATION CAPACITY OF STEEL TUBE CINFINED HIGH-STRENGTH CONCRETE SHEAR WALLS

  • 摘要: 通过剪跨比为2.1的钢管约束高强混凝土剪力墙试件低周反复加载试验,研究其在压弯荷载作用下的破坏形态、机理及耗能能力。试验表明,通过在高强混凝土剪力墙约束边缘构件内设置钢管,可提高其延性。在试验研究基础上,对钢管约束高强混凝土剪力墙压弯承载力及变形能力进行分析。考虑内置钢管约束影响,建立钢管约束高强混凝土剪力墙压弯承载力计算公式。根据截面平衡条件和变形条件,计算钢管约束高强混凝土剪力墙位移延性系数,得到钢管套箍率、轴压比及墙体高宽比与位移延性系数之间关系。研究表明,增加钢管套箍率及控制墙体轴压比,可以提高钢管约束高强混凝土剪力墙延性;提出满足不同变形能力要求,对应各种轴压比情况下,钢管约束高强混凝土剪力墙钢管套箍率建议设计值。
    Abstract: Cyclic loading tests of steel tube confined high-strength concrete shear walls with shear span ratios of 2.1 were conducted, and the failure pattern, mechanism and deformability under axial force-moment load were studied. The test shows that by providing confinement to the wall panel with steel tube, the ductility of specimens are improved. Based on experimental results, axial force-moment capacity and deformation capacity of steel tube confined high-strength concrete shear walls were analyzed. By considering the confinement of steel tube, axial force-moment capacity formula was established. Based on the equilibrium and deformation condition, the displacement ductility ratio of steel tube confined high-strength concrete shear walls was calculated. The mutual relationships among steel stirrup ratio, axial compression ratio, aspect ratio and displacement ductility ratio were obtained. The result shows that enhancing steel stirrup ratio and restraining axial compression ratio can improve ductility performance. Furthermore, the steel stirrup ratios with various deformation capacity and axial compression ratios are recommended.
  • [1] Kent A, Harries, David S. Mcneice. Performance-based design of high-rise couple wall systems[J]. The Structural Design of Tall and Special Buildings, 2006, 15(3):289-306.
    [2] Humar M, Fazileh F. Displacement-based seismic design of regular reinforced concrete shear wall buildings[J]. Canadian Journal of Civil Engineering, 2011, 38(6):616-626.
    [3] 陈肇元. 高强与高性能混凝土的发展及应用[J]. 土木工程学报, 1997, 30(5):3-11.Chen Zhaoyuan. The development and application of high-strength and high-performance concrete[J]. China Civil Engineering Journal, 1997, 30(5):3-11. (in Chinese)
    [4] 李惠. 高强混凝土及其组合结构[M]. 北京:科学出版社, 2004:2-8. Li Hui. High strength concrete and its application in composite structures[M]. Beijing:Science Press, 2004:2-8. (in Chinese)
    [5] Cho S H, Tupper B, Cook W D. Structural steel boundary elements for ductile concrete walls[J]. Journal of Structural Engineering, 2004, 130(5):762-768.
    [6] Dan D, Fabian A, Stolan V. Theoretical and experimental study on composite steel concrete shear walls with vertical steel encased profiles[J]. Journal of Constructional Steel Research, 2011, 67(5):800-813.
    [7] Epackachi S, Nguyen N, Kurt E, Whittaker A, Varma A. In-plane seismic behavior of rectangular steel-piate composite wall pierd[J]. Journal of Structural Engineering, 2015, 141(7):04014176.
    [8] 白亮, 梁兴文, 邓博团. 不同参数型钢高性能混凝土剪力墙抗震性能研究[J]. 工程力学, 2011, 28(7):151-156.Bai Liang, Liang Xingwen, Deng Botuan. Study on the seismic behavior of steel high-performance-concrete shear walls with different parameters[J]. Engineering Mechanics, 2011, 28(7):151-156. (in Chinese)
    [9] 纪晓东, 钱稼茹. 震后功能可快速恢复联肢剪力墙研究[J]. 工程力学, 2015, 32(10):1-8.Ji Xiaodong, Qian Jiaru. Study of earthquake-resilient coupled shear walls[J]. Engineering Mechanics, 2015, 32(10):1-8. (in Chinese)
    [10] 钱稼茹, 魏勇, 赵作周, 等. 高轴压比钢骨混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2008, 29(2):43-50.Qian Jiaru, Wei Yong, Zhang Zuozhou, et al. Experimental study on seismic behavior of SRC shear walls with high axial force ratio[J]. Journal of Building Structures, 2008, 29(2):43-50.(in Chinese)
    [11] 钱稼茹, 江枣, 纪晓东. 高轴压比钢管混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2010, 31(7):40-48.Qian Jiaru, Jiang Zao, Ji Xiaodong. Experimental study on seismic behavior of steel tube-reinforced concrete composite shear walls with high axial conpressive load ratio[J]. Journal of Building Structures, 2010, 31(7):40-48. (in Chinese)
    [12] 曹万林, 王敏, 王绍合, 等. 高轴压比下钢管混凝土边框组合剪力墙抗震性能试验研究[J]. 地震工程与工程振动, 2008, 28(1):85-90.Cao Wanlin, Wang Min, Wang Shaohe, et al. Seismic behavior research on composite shear wall with concrete filled steel tube columns in high axial-load ratio[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(1):85-90. (in Chinese)
    [13] 曹万林, 王敏, 张建伟, 等. 钢管混凝土边框组合剪力墙抗震试验及承载力计算[J]. 北京工业大学学报, 2008, 34(12):1291-1297. Cao Wanlin, Wang Min, Zhang Jianwei, et al. Seismic ExPeriment and Load-carrying CaPacity Calculation of Shear Wall With Concret-e Filled Steel Tube Columns[J]. Journal of Beijing University of Technoligy, 2008, 34(12):1291-1297. (in Chinese)
    [14] 曹万林, 王敏, 王绍合, 等. 矩形钢管混凝土边框组合剪力墙及筒体结构抗震研究[J]. 工程力学, 2008, 25(增刊I):58-70.Cao Wanlin, Wang Min, Wang Shaohe, et al. Aseismic research of composite shear wall and core walls with rectangular concrete filled steel tube columns[J]. Engineering Mechanics, 2008, 25(Suppl I):58-70. (in Chinese)
    [15] 方小丹, 李青, 韦宏, 等. 钢管高强混凝土剪力墙压弯性能试验研究[J]. 建筑结构学报, 2013, 34(8):72-81.Fang Xiaodan, Li Qing, Wei Hong, et al. Experimental study on axial-flexural behavior of shear walls with steel tube-confined high performance concrete[J]. Journal of Building Structures, 2013, 34(8):72-81. (in Chinese)
    [16] 方小丹, 蒋标, 韦宏, 等. 钢管高强混凝土剪力墙轴 心受压试验研究[J]. 建筑结构学报, 2013, 34(3):100-109.Fang Xiaodan, Jiang Biao, Wei Hong, et al. Axial compressive test and study on steel tube confined high strength concrete shear wall[J]. Journal of Building Structures, 2013, 34(3):100-109. (in Chinese)
    [17] 杨光, 赵作周, 钱稼茹, 等. 新型钢管混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构, 2014, 44(7):93-98.Yang Guang, Zhao Zuozhou, Qian Jiaru, et al. Experimental study on seismic behavior of a new type of concrete filled steel tube composite shear walls[J]. Building Structure, 2014, 44(7):93-98. (in Chinese)
    [18] 白亮, 周天华, 梁兴文, 等. 钢管约束高强混凝土剪力墙抗震性能试验研究[J]. 土木工程学报, 2014, 47(5):9-17.Bai Liang, Zhou Tianhua, Liang Xingwen, et al. Experimental study on the seismic behavior of steel stub confined high-strength concrete shear walls[J]. China Civil Engineering Journal, 2014, 47(5):9-17. (in Chinese)
    [19] 张轶. 内置钢管高性能混凝土剪力墙受力性能及设计方法研究[D]. 西安:长安大学, 2014. Zhang Yi. Experimental studies and theoretical analysis of steel high performance concrete shear wall[D]. Xi'an:Chang'an University, 2014. (in Chinese)
    [20] 韩林海. 钢管混凝土结构-理论与实践[M]. 第2版. 北京:科学出版社, 2007:69-70. Han Linhai. Concrete filled steel tubular structures-theory and practice[M]. 2nd ed. Beijing:Science Press, 2007:69-70. (in Chinese)
    [21] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010.GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [22] Pauiay T, Priesiey M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York:John Wiley & Sons, Inc, 1992:86-88.
  • 期刊类型引用(7)

    1. 程卫红,田春雨,王翠坤. 钢板夹心混凝土组合剪力墙的变形能力研究. 工程力学. 2024(04): 39-46 . 本站查看
    2. 武立伟,于斐凡,郭雪源,陈海彬,苏幼坡,任宏伟. 装配式圆钢管混凝土组合剪力墙抗震性能试验研究. 建筑结构学报. 2022(S1): 186-195 . 百度学术
    3. 胡利烽,曹新明,汤维多. 区域约束混凝土剪力墙截面曲率及延性分析. 建筑结构. 2022(S2): 968-974 . 百度学术
    4. 李斌,黄炜. 装配整体式网格剪力墙压弯承载力计算方法. 工程力学. 2020(05): 178-189 . 本站查看
    5. 赵花静,李青宁,赵珺,李书锋,郑玉. 高强矩形螺旋钢筋约束高强混凝土剪力墙截面弯矩-曲率计算方法研究. 工程力学. 2020(09): 123-132 . 本站查看
    6. 孙建鹏,刘银涛,周鹏,李青宁,黄文锋,龚国峰. 连续刚构桥弹塑性力学行为分析的传递矩阵法. 振动与冲击. 2020(22): 234-242 . 百度学术
    7. 陈宗平,刘祥,周文祥. 高温后圆钢管高强混凝土界面黏结性能试验研究. 工程力学. 2018(08): 192-200+256 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  411
  • HTML全文浏览量:  41
  • PDF下载量:  30
  • 被引次数: 19
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2017-01-18
  • 刊出日期:  2017-11-24

目录

    /

    返回文章
    返回