基于EEP法的三维有限元超收敛计算初探

袁驷, 吴越, 徐俊杰, 邢沁妍

袁驷, 吴越, 徐俊杰, 邢沁妍. 基于EEP法的三维有限元超收敛计算初探[J]. 工程力学, 2016, 33(9): 15-20. DOI: 10.6052/j.issn.1000-4750.2016.05.ST07
引用本文: 袁驷, 吴越, 徐俊杰, 邢沁妍. 基于EEP法的三维有限元超收敛计算初探[J]. 工程力学, 2016, 33(9): 15-20. DOI: 10.6052/j.issn.1000-4750.2016.05.ST07
YUAN Si, WU Yue, XU Jun-jie, XING Qin-yan. EXPLORATION ON SUPER-CONVERGENT SOLUTIONS OF 3D FEM BASED ON EEP METHOD[J]. Engineering Mechanics, 2016, 33(9): 15-20. DOI: 10.6052/j.issn.1000-4750.2016.05.ST07
Citation: YUAN Si, WU Yue, XU Jun-jie, XING Qin-yan. EXPLORATION ON SUPER-CONVERGENT SOLUTIONS OF 3D FEM BASED ON EEP METHOD[J]. Engineering Mechanics, 2016, 33(9): 15-20. DOI: 10.6052/j.issn.1000-4750.2016.05.ST07

基于EEP法的三维有限元超收敛计算初探

基金项目: 国家自然科学基金项目(51378293,51078199)
详细信息
    作者简介:

    吴越(1991-),男,江西人,博士生,从事结构工程研究(E-mail:ywu12@mails.tsinghua.edu.cn);徐俊杰(1984-),男,山东人,副研究员,博士,从事结构工程研究(E-mail:xujj@iem.ac.cn);邢沁妍(1981-),女,辽宁人,讲师,博士,从事结构工程研究(E-mail:xingqy@mail.thu.edu.cn).

    通讯作者:

    袁驷(1953-),男,北京人,教授,博士,中国土木工程学会副理事长,中国力学学会副理事长,从事结构工程研究(E-mail:yuans@tsinghua.edu.cn).

  • 中图分类号: TU311.4

EXPLORATION ON SUPER-CONVERGENT SOLUTIONS OF 3D FEM BASED ON EEP METHOD

More Information
    Corresponding author:

    YUAN Si: 10.6052/j.issn.1000-4750.2016.05.ST07

  • 摘要: 二维有限元法(FEM)的超收敛计算,借助有限元线法(FEMOL)作为桥梁,分两步采用单元能量投影(EEP)法导出超收敛公式,初步形成“逐维离散、逐维恢复”的方案。然而这一思路直接应用于三维问题却遇到了困扰:一维问题的EEP解(位移和导数)均可达到相同的超收敛阶,而二维问题却难以做到。研究发现,为了得到三维问题的EEP超收敛位移,只需提供二维问题最低阶的超收敛位移即可。该文按此思路推导了非规则网格下三维六面体单元的EEP超收敛位移公式,给出了一个实施方案,并通过数值算例验证了此方案的有效性。
    Abstract: In the super-convergence computation of a 2D Finite Element Method (FEM), the "discretization and recovery by dimension" scheme has basically formed by taking the Finite Element Method of Lines (FEMOL) as a bridge and iteratively by adopting the super-convergent formulas derived from the Element Energy Projection (EEP) method. However, when applying this idea to 3D problems, it occurs a puzzle that the EEP solutions (including displacements and derivatives) of 1D problems all share the same super-convergence order whereas those of 2D problems can hardly do. Recent studies show that in order to obtain the EEP super-convergent solution of a 3D problem, the displacement of a 2D problem with the least super-convergence order is merely necessary. Following this idea, this paper derives EEP super-convergent formulas for 3D hexahedron elements on irregular meshes, proposes an implementation scheme, and verifies its effectiveness with numerical examples.
  • [1] Strang G, Fix G J. An analysis of the finite element method[M]. 2nd ed. Englewood Cliffs, NJ: Prentice-hall, 2008: 39-50.
    [2] 袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2): 1-9. Yuan Si, Wang Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM[J]. Engineering Mechanics, 2004, 21(2): 1-9. (in Chinese)
    [3] 袁驷, 王旭, 邢沁妍, 叶康生. 具有最佳超收敛阶的EEP法计算格式: I算法公式[J]. 工程力学, 2007, 24(10): 1-5. Yuan Si, Wang Xu, Xing Qinyan, Ye Kangsheng. A scheme with optimal order of super-convergence based on the element energy projection method-I Formulation[J]. Engineering Mechanics, 2007, 24(10): 1-5. (in Chinese)
    [4] 袁驷, 杜炎, 邢沁妍, 叶康生. 一维EEP自适应技术新进展: 从线性到非线性[J]. 工程力学, 2012, 29(增刊Ⅱ): 1-8. Yuan Si, Du Yan, Xing Qinyan, Ye Kangsheng. New progress in self-adaptive analysis of 1D problems: from linear to nonlinear[J]. Engineering Mechanics, 2012, 29(Suppl II): 1-8. (in Chinese)
    [5] 袁驷, 刘泽洲, 邢沁妍. 一维变分不等式问题的自适应有限元分析新探[J]. 工程力学, 2015, 32(7): 11-16. Yuan Si, Liu Zezhou, Xing Qinyan. A new approach to self-adaptive FEM for one-dimensional variational inequality problems[J]. Engineering Mechanics, 2015, 32(7): 11-16. (in Chinese)
    [6] Yuan S. The Finite Element Method of Lines: Theory and Applications[M]. Beijing-New York: Science Press, 1993.
    [7] 袁驷, 王枚, 王旭. 二维有限元线法超收敛解答计算的EEP法[J]. 工程力学, 2007, 24(1): 1-10. Yuan Si, Wang Mei, Wang Xu. An element-energy-projection method for super-convergence solutions in two-dimensional finite element method of lines[J]. Engineering Mechanics, 2007, 24(1): 1-10. (in Chinese)
    [8] 袁驷, 肖嘉, 叶康生. 线法二阶常微分方程组有限元分析的EEP超收敛计算[J]. 工程力学, 2009, 26(11): 1-9, 22. Yuan Si, Xiao Jia, Ye Kangsheng. EEP super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics, 2009, 26(11): 1-9, 22. (in Chinese)
    [9] 袁驷, 徐俊杰, 叶康生, 邢沁妍. 二维自适应技术新进展:从有限元线法到有限元法[J]. 工程力学, 2011, 28(增刊II): 1-10. Yuan Si, Xu Junjie, Ye Kangsheng, Xing Qinyan. New progress in self-adaptive analysis of 2D problems: from FEMOL to FEM[J]. Engineering Mechanics, 2011, 28(Suppl II): 1-10. (in Chinese)
    [10] 徐俊杰. 基于EEP法的二维和三维有限元法自适应分析的研究[D]. 北京: 清华大学, 2012. Xu Junjie. Research on adaptive FEM analysis for 2D and 3D problems based on EEP super-convergent method[D]. Beijing: Tsinghua University, 2012. (in Chinese)
  • 期刊类型引用(4)

    1. 袁驷,孙浩涵. 二维自由振动问题的自适应有限元分析初探. 工程力学. 2020(01): 17-25 . 本站查看
    2. 袁驷,蒋凯峰,邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析. 工程力学. 2019(01): 15-22 . 本站查看
    3. 叶康生,邱廷柱. 二阶非线性常微分方程边值问题有限元p型超收敛计算. 工程力学. 2019(12): 7-14 . 本站查看
    4. Si YUAN,Yue WU,Qinyan XING. Recursive super-convergence computation for multi-dimensional problems via one-dimensional element energy pro jection technique. Applied Mathematics and Mechanics(English Edition). 2018(07): 1031-1044 . 必应学术

    其他类型引用(4)

计量
  • 文章访问数:  394
  • HTML全文浏览量:  19
  • PDF下载量:  189
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-05-30
  • 修回日期:  2016-08-25
  • 刊出日期:  2016-09-24

目录

    /

    返回文章
    返回