热贮料作用下浅圆筒仓温度效应研究

马越, 杨应华

马越, 杨应华. 热贮料作用下浅圆筒仓温度效应研究[J]. 工程力学, 2017, 34(10): 98-105. DOI: 10.6052/j.issn.1000-4750.2016.05.0389
引用本文: 马越, 杨应华. 热贮料作用下浅圆筒仓温度效应研究[J]. 工程力学, 2017, 34(10): 98-105. DOI: 10.6052/j.issn.1000-4750.2016.05.0389
MA Yue, YANG Ying-hua. THERMAL EFFECTS OF HIGH TEMPERATURE STORED MATERIALS ON SHALLOW CYLINDRICAL SILOS[J]. Engineering Mechanics, 2017, 34(10): 98-105. DOI: 10.6052/j.issn.1000-4750.2016.05.0389
Citation: MA Yue, YANG Ying-hua. THERMAL EFFECTS OF HIGH TEMPERATURE STORED MATERIALS ON SHALLOW CYLINDRICAL SILOS[J]. Engineering Mechanics, 2017, 34(10): 98-105. DOI: 10.6052/j.issn.1000-4750.2016.05.0389

热贮料作用下浅圆筒仓温度效应研究

基金项目: 陕西省教育厅专项科研计划项目(11JK0945)
详细信息
    作者简介:

    马越(1988-),男,陕西榆林人,博士生,主要从事金属薄壳结构研究(E-mail:mayuemail@foxmail.com).

    通讯作者:

    杨应华(1965-),男,陕西丹凤人,教授,博士,博导,主要从事大跨、复杂及工业钢结构等结构工程的研究(E-mail:yhyang@xauat.edu.cn).

  • 中图分类号: TU333;TU391

THERMAL EFFECTS OF HIGH TEMPERATURE STORED MATERIALS ON SHALLOW CYLINDRICAL SILOS

  • 摘要: 为了研究热贮料对筒仓位移及内力的影响并方便设计时计算由热贮料产生的温度效应,本文推导了热贮料作用下仓壁位移和内力的计算公式,并通过数值模拟验证了公式的准确性。利用所推导公式分析了竖向温差对钢筒仓和内外、竖向温差对混凝土筒仓的影响。结果表明竖向温差使钢筒仓在冷热贮料交界面附近的仓壁出现较大的径向位移差;并导致温度应力显著增大;该温度应力随着径厚比的减小而增大。内外温差使混凝土筒仓上端产生较大的周向拉力;竖向温差也使筒仓中部的周向力增大;且径厚比对周向力的影响与钢筒仓相似。
    Abstract: In order to analyze the thermal effects of high temperature stored materials on silos, the formulations determining internal forces and displacements of shallow cylindrical silos infilled with high temperature stored materials were derived, and the accuracy of these formulations were demonstrated by numerical methods. Thermal effects induced by high temperature stored materials on steel and concrete silos were analyzed by the formulations respectively. The results show that vertical temperature differences lead to significant radial displacement variations and stress increments in the vicinity of the interface between cooler and hotter stored materials in steel silos, and these stresses increasing with the decrease of the radius to thickness ratio of the silo. Radial temperature differences in concrete silo walls cause large circumferential tension at the top of the silos, while vertical temperature differences raise significant circumferential forces in the middle of the silos. These thermal effects on concrete silos also increase with the decrease of the silo radius to thickness ratio.
  • [1] Dogangun A, Karaca Z, Durmus A. Cause of damage and failures in silo structures[J]. Journal of performance of constructed facilities ASCE, 2009, 23(2):65-71.
    [2] Sadowski A J, Rotter J M. Exploration of novel geometric imperfection forms in buckling failures of thin-walled metal silos under eccentric discharge[J]. International Journal of Solids & Structures, 2013, 50(5):781-794.
    [3] 孙珊珊, 赵均海, 张常光. 基于统一强度理论的大型浅圆筒仓侧压力计算[J]. 工程力学, 2013, 30(5):244-249. Sun Shanshan, Zhao Junhai, Zhang Changguang. Lateral pressure of large squat silos based on the unified strength theory[J]. Engineering Mechanics, 2013, 30(5):244-249. (in Chinese)
    [4] 朱亚智, 孟少平, 孙巍巍. 偏心卸料下大直径浅圆仓侧压力计算[J]. 工程力学, 2013, 30(8):67-77. Zhu Yazhi, Meng Shaoping, Sun Weiwei. Calculation of lateral pressure in squat silo with large diameter under eccentric discharge[J]. Engineering Mechanics, 2013, 30(8):67-77. (in Chinese)
    [5] Priestley M J N. Ambient thermal stresses in circular pre-stressed concrete tanks[J]. ACI Journal, 1976, 73(10):553-560.
    [6] 孔德润, 蒲维民. 直径40 m圆筒煤仓的温度作用研究[J]. 特种结构, 1998, 15(2):32-38. Kong Derun, Pu Weimin. Study on temperature of coal silo with diameter of 40 meters[J]. Special Structure, 1998, 15(2):32-38. (in Chinese)
    [7] 孙巍巍, 孟少平, 栾文彬. 大直径混凝土筒仓温度应力研究[J]. 工程力学, 2011, 28(7):91-97. Sun Weiwei, Meng Shaoping, Luan Wenbin. Research on thermal stress of large diameter concrete silos[J]. Engineering Mechanics, 2011, 28(7):91-97. (in Chinese)
    [8] 夏冬桃, 徐礼华. 环境温度作用对巨型贮煤筒仓的内力影响分析[J]. 工业建筑, 2006, 36(3):80-82. Xia Dongtao, Xu Lihua. Effects of temperature load on giant reinforced concrete coal silo[J]. Industrial Construction, 2006, 36(3):80-82. (in Chinese)
    [9] Moran J M, Juan A, Robles R, Aguado P J. Effects of environmental temperature changes on steel silos[J]. Biosystems Engineering, 2006, 94(2):229-238.
    [10] 杨应华, 马越. 日照作用下大直径氧化铝钢筒仓应力分析[J]. 建筑结构, 2014, 44(12):104-109. Yang Yinghua, Ma Yue. Solar radiation effects on stresses of a large flat-bottom squat steel silos for alumina[J]. Building Structure, 2014, 44(12):104-109. (in Chinese)
    [11] Yang Yinghua, Zhang Yan. Temperature effects on the buckling of large flat-bottom squat steel silos for alumina[C]//Advances in Steel Structures. Nanjing China, Southeast University Press, 2012:1173-1178.
    [12] 宋靖. 大型高温贮料筒仓受力性能分析[D]. 杭州:浙江大学, 2014. Song Jing. Mechanical behavior analysis of large silos storage for high temperature stored materials[D]. Hangzhou:Zhejiang University, 2014. (in Chinese)
    [13] GB50884-2013, 钢筒仓技术规范[S]. 北京:中国计划出版社, 2013. GB50884-2013, Code for design of steel silo structures[S]. Beijing:China Planning Press, 2013. (in Chinese)
    [14] GB50322-2011, 粮食钢板筒仓设计规范[S]. 北京:中国计划出版社, 2011. GB50322-2011, Code for design of grain steel silos[S]. Beijing:China Planning Press, 2011. (in Chinese)
    [15] GB50077-2003, 钢筋混凝土筒仓设计规范[S]. 北京:中国计划出版社, 2003. GB50077-2003, Code for design of reinforced concrete silos[S]. Beijing:China Planning Press, 2003. (in Chinese)
    [16] 韩重庆, 孟少平, 吕志涛. 60 m直径水泥熟料筒仓温度作用研究[J]. 工业建筑, 2000, 30(4):58-60. Han Chongqing, Meng Shaoping, Lü Zhitao. Study of temperature effect in a large-diameter silo of cement clinker[J]. Industrial Construction, 2000, 30(4):58-60. (in Chinese)
    [17] EN1991-4 Eurocode1. Action on structures-Part 4:silo and tanks[S]. European Standard, 2006.
    [18] 黄克智, 夏之熙. 板壳理论[M]. 北京:清华大学出版社, 1987:202-218. Huang Kezhi, Xia Zhixi. Theory of plate and shell[M]. Beijing:Tsinghua University Press, 1987:202-218. (in Chinese)
    [19] 吴连元. 板壳理论[M]. 上海:上海交通大学出版社, 1989:268-285. Wu Lianyuan. Theory of plate and shell[M]. Shanghai:Shanghai Jiao Tong University Press, 1989:268-285. (in Chinese)
  • 期刊类型引用(7)

    1. 崔苗苗,庞鹏飞,向活跃,刘占辉,李永乐. 桁梁断面对大跨度公铁两用桥梁风-列车-桥耦合振动特性的影响. 铁道建筑. 2023(02): 51-55+115 . 百度学术
    2. Wanshui Han,Xiaodong Liu,Xuelian Guo,Shizhi Chen,Gan Yang,Huanju Liu. Research status and prospect of wind-vehicle-bridge coupling vibration system. Journal of Traffic and Transportation Engineering(English Edition). 2022(03): 319-338 . 必应学术
    3. 何玮,郭向荣,朱志辉. 侧风对大跨度城轨斜拉桥车-桥耦合振动的影响及其对策研究. 应用力学学报. 2021(03): 958-964 . 百度学术
    4. 李锦华,张耀,张焕涛,蓝声宁. 基于移动荷载谱的桥梁竖向自由振动最大响应研究. 振动与冲击. 2021(14): 261-267 . 百度学术
    5. 张景钰,张明金,李永乐,房忱,向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究. 工程力学. 2019(01): 80-87 . 本站查看
    6. 朱志辉,张磊,龚威,罗思慧,姚京川,余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法. 工程力学. 2019(04): 196-205 . 本站查看
    7. 韩万水,赵越,刘焕举,陈笑,袁阳光. 风-车-桥耦合振动研究现状及发展趋势. 中国公路学报. 2018(07): 1-23 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  220
  • HTML全文浏览量:  38
  • PDF下载量:  20
  • 被引次数: 22
出版历程
  • 收稿日期:  2016-05-19
  • 修回日期:  2016-10-29
  • 刊出日期:  2017-10-24

目录

    /

    返回文章
    返回