隧道火灾中正庚烷池火燃烧特性的实验研究

钟委, 王涛, 梁天水

钟委, 王涛, 梁天水. 隧道火灾中正庚烷池火燃烧特性的实验研究[J]. 工程力学, 2017, 34(8): 241-248. DOI: 10.6052/j.issn.1000-4750.2016.03.0208
引用本文: 钟委, 王涛, 梁天水. 隧道火灾中正庚烷池火燃烧特性的实验研究[J]. 工程力学, 2017, 34(8): 241-248. DOI: 10.6052/j.issn.1000-4750.2016.03.0208
ZHONG Wei, WANG Tao, LIANG Tian-shui. EXPERIMENTAL INVESTIGATION ON THE BURNING CHARACTERISTIC OF N-HEPTANES POOL FIRE IN TUNNEL[J]. Engineering Mechanics, 2017, 34(8): 241-248. DOI: 10.6052/j.issn.1000-4750.2016.03.0208
Citation: ZHONG Wei, WANG Tao, LIANG Tian-shui. EXPERIMENTAL INVESTIGATION ON THE BURNING CHARACTERISTIC OF N-HEPTANES POOL FIRE IN TUNNEL[J]. Engineering Mechanics, 2017, 34(8): 241-248. DOI: 10.6052/j.issn.1000-4750.2016.03.0208

隧道火灾中正庚烷池火燃烧特性的实验研究

基金项目: 国家自然科学基金项目(51404215);国家博士后基金会特别项目(2015T80781);建筑安全与环境国家重点实验室开放课题项目(BSBE2015-02)
详细信息
    作者简介:

    钟委(1978-),男,重庆江津人,副教授,博士,从事建筑火灾与消防技术研究(E-mail:zhongwei@zzu.edu.cn);王涛(1990-),男,河南永城人,硕士,从事建筑火灾防治研究(E-mail:wangtaozzu@126.com).

    通讯作者:

    梁天水(1981-),男,河南周口人,副教授,博士,从事建筑火灾与消防技术研究(E-mail:liangtsh@zzu.edu.cn).

  • 中图分类号: U458.1

EXPERIMENTAL INVESTIGATION ON THE BURNING CHARACTERISTIC OF N-HEPTANES POOL FIRE IN TUNNEL

  • 摘要: 隧道火灾中热释放速率是评估临界风速、最高温度及温度分布的一个重要参数,而火源高度和隧道宽度是两个影响热释放速率的重要因素。为揭示上述两个因素对隧道火灾发展的影响,在缩放比例为1:10的隧道模型中进行了一系列小尺寸火灾模拟实验并对正庚烷池火的燃烧过程进行了研究。结果表明:隧道火灾的热释放速率明显大于开放环境,其燃烧过程可分为初始燃烧阶段、过渡阶段和稳定燃烧阶段;增加火源高度地面火灾(火源高度与隧道高度之比H*=0.1)质量燃烧速率小于其他各工况,H*=0.7时质量燃烧速率能增大到地面火灾的3.53倍~5倍;无量纲火焰蔓延总长度正比于无量纲热释放速率的五分之二次方,由于隧道侧壁的限制作用,其比例系数小于Hasemi's模型。
    Abstract: In the case of a tunnel fire, heat release rate is an important parameter for evaluating the critical velocity, the maximum temperature and the temperature distribution. In a tunnel, fire source height and tunnel width are two key factors which affect the growth of the heat release rate. To evaluate the influence of the two factors on fire growth, a series of tests were conducted in a 1:10 scale tunnel, and the burning process of pool fire was studied. Results show that the burning rate of tunnel fire is significantly larger than the one in open space, and tunnel fire can be divided to three stages:initial stage, transition stage and stable burning stage. When changing the fire source height, the mass burning rate of ground fire (the ration of fire source height to tunnel height, H*=0.1) was far less than other situations. For a fire of H*=0.7, the mass burning rate became 3.53~5 times as big as that of the ground fire. The dimensionless total flame extension length is proportional to 2/5 power of dimensionless heat release rate, and the coefficient is less than Hasemi's model due to the restriction of tunnel wall.
  • [1] Vuilleumier F, Weatherill A, Crausaz B. Safety aspects of railway and road tunnel:example of the Lötschberg railway tunnel and Mont-Blanc road tunnel[J]. Tunnelling & Underground Space Technology, 2002, 17(2):153-158.
    [2] Li Y Z, Ingason H. The maximum ceiling gas temperature in a large tunnel fire[J]. Fire Safety Journal, 2012, 48(48):38-48.
    [3] Beard A N. Fire safety in tunnels[J]. Fire Safety Journal, 2009, 44(2):276-278.
    [4] Lönnermark A, Ingason H. Gas temperatures in heavy goods vehicle fires in tunnels[J]. Fire Safety Journal, 2005, 40(6):506-527.
    [5] Chen X. Simulation of temperature and smoke distribution of a tunnel fire based on modifications of multi-layer zone model[J]. Tunnelling & Underground Space Technology, 2008, 23(1):75-79.
    [6] Vauquelin O, Wu Y. Influence of tunnel width on longitudinal smoke control[J]. Fire Safety Journal, 2006, 41(6):420-426.
    [7] Li Y Z, Lei B, Ingason H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires[J]. Fire Safety Journal, 2010, 45(6/7/8):361-370.
    [8] Ji J, Han J Y, Fan C G, et al. Influence of cross-sectional area and aspect ratio of shaft on natural ventilation in urban road tunnel[J]. International Journal of Heat & Mass Transfer, 2013, 67(4):420-431.
    [9] Migoya E, García J, Crespo A. Determination of the heat release rate inside operational road tunnels by comparison with CFD calculations[J]. Tunnelling & Underground Space Technology, 2011, 26(1):211-222.
    [10] Fan C G, Ji J, Gao Z H, et al. Experimental study on transverse smoke temperature distribution in road tunnel fires[J]. Tunnelling & Underground Space Technology, 2013, 37(6):89-95.
    [11] Hinkley P L, Theobald C R. The contribution of flames under ceilings to fire spread in compartments[J]. Fire Safety Journal, 1984, 7(3):227-242.
    [12] Hansen R, Ingason H. An engineering tool to calculate heat release rates of multiple objects in underground structures[J]. Fire Safety Journal, 2011, 46(4):194-203.
    [13] Ji J, Fan C G, Zhong W, et al. Experimental investigation on influence of different transverse fire locations on maximum smoke temperature under the tunnel ceiling[J]. International Journal of Heat & Mass Transfer, 2012, 55(17/18):4817-4826.
    [14] Heskestad G, Hamada T. Ceiling jets of strong fire plumes[J]. Fire Safety Journal, 1993, 21(1):69-82.
    [15] Quintiere J G. Scaling applications in fire research[J]. Fire Safety Journal, 1989, 15(1):1-12.
    [16] 范传刚. 隧道火灾发展特性及竖井自然排烟方法研究[D]. 合肥:中国科学技术大学, 2015. Fan Chuangang. Studies on characteristics of tunnel fire development and natural ventilation mode using shafts[D]. Hefei:University of Science and Technology of China, 2015. (in Chinese)
    [17] Li L, Li S, Wang X, et al. Fire-induced flow temperature along tunnels with longitudinal ventilation[J]. Tunnelling & Underground Space Technology, 2012, 32(11):44-51.
    [18] Gao Z, Ji J, Wan H, et al. An investigation of the detailed flame shape and flame length under the ceiling of a channel[J]. Proceedings of the Combustion Institute, 2014, 35(3):2657-2664.
    [19] You H Z, Faeth G M. Ceiling heat transfer during fire plume and fire impingement[J]. Fire & Materials, 1979, 3(3):140-147.
    [20] Heskestad G, Hamada T. Ceiling jets of strong fire plumes[J]. Fire Safety Journal, 1993, 21(1):69-82.
    [21] Ding H, Quintiere J G. An integral model for turbulent flame radial lengths under a ceiling[J]. Dissertations & Theses-Gradworks, 2010, 52(8):25-33.
    [22] Gross D. Measurement of flame lengths under ceilings[J]. Fire Safety Journal, 1989, 15(89):31-44.
  • 期刊类型引用(9)

    1. 赵旭,贾敏涛,周伟,张昊. 地下金属矿山火灾时期CO的演化仿真与应用实践——以刘楼矿为例. 中国安全生产科学技术. 2025(02): 108-114 . 百度学术
    2. 郑家辉,郑雨航,葛樊亮,杨健. 半横向通风下顶棚有效高度对隧道烟气温度的影响. 福州大学学报(自然科学版). 2024(05): 612-618 . 百度学术
    3. 刘松涛,赵金龙,卫文彬,崔心源,刘庆术. 隧道内不同间距双火源火灾试验及模拟研究. 中国公路学报. 2022(07): 193-202 . 百度学术
    4. 汪哲,刘家豪,黎东霞,柴欣成. 密闭机舱双火源燃烧质量损失研究. 消防科学与技术. 2022(12): 1644-1648 . 百度学术
    5. 王辉波,冯彤辉,刘灵. 船舶舱室层间火灾差异性仿真研究. 安全与环境学报. 2021(06): 2525-2532 . 百度学术
    6. 杨晓菡. 基于正庚烷油池火验证大尺度量热装置. 消防科学与技术. 2020(02): 194-196 . 百度学术
    7. 徐浩祯,赵威风,吕思嘉. 隧道双火源火灾燃烧特性的实验研究. 工程热物理学报. 2020(05): 1254-1260 . 百度学术
    8. 郑净,李小珍,毛小艺. 油池火下横隔梁对多肋钢筋混凝土T梁桥温度场的影响. 土木与环境工程学报(中英文). 2019(03): 104-110 . 百度学术
    9. 钟委,骆轲轲,王涛,梁天水,赵军. 隧道火灾中正庚烷池火的火焰振荡特性研究. 工程力学. 2018(09): 240-247 . 本站查看

    其他类型引用(16)

计量
  • 文章访问数:  319
  • HTML全文浏览量:  25
  • PDF下载量:  137
  • 被引次数: 25
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-07-10
  • 刊出日期:  2017-08-24

目录

    /

    返回文章
    返回