钢筋混凝土框架结构强柱弱梁整体失效模式可控设计

白久林, 金双双, 欧进萍

白久林, 金双双, 欧进萍. 钢筋混凝土框架结构强柱弱梁整体失效模式可控设计[J]. 工程力学, 2017, 34(8): 51-59. DOI: 10.6052/j.issn.1000-4750.2016.03.0175
引用本文: 白久林, 金双双, 欧进萍. 钢筋混凝土框架结构强柱弱梁整体失效模式可控设计[J]. 工程力学, 2017, 34(8): 51-59. DOI: 10.6052/j.issn.1000-4750.2016.03.0175
BAI Jiu-lin, JIN Shuang-shuang, OU Jin-ping. STRONG-COLUMN WEAK-BEAM GLOBAL SEISMIC FAILURE MODE CONTROL-BASED DESIGN OF REINFORCED CONCRETE FRAME STRUCTURES[J]. Engineering Mechanics, 2017, 34(8): 51-59. DOI: 10.6052/j.issn.1000-4750.2016.03.0175
Citation: BAI Jiu-lin, JIN Shuang-shuang, OU Jin-ping. STRONG-COLUMN WEAK-BEAM GLOBAL SEISMIC FAILURE MODE CONTROL-BASED DESIGN OF REINFORCED CONCRETE FRAME STRUCTURES[J]. Engineering Mechanics, 2017, 34(8): 51-59. DOI: 10.6052/j.issn.1000-4750.2016.03.0175

钢筋混凝土框架结构强柱弱梁整体失效模式可控设计

基金项目: 国家自然科学基金项目(51261120376;51608073)
详细信息
    作者简介:

    金双双(1986-),女,浙江人,讲师,博士,主要从事钢板剪力墙结构研究(E-mail:jin_shuangs@163.com);欧进萍(1959-),男,湖南人,教授,博士,工程院院士,从事防灾减灾、结构健康监测及振动控制研究(E-mail:oujinping@hit.edu.cn).

    通讯作者:

    白久林(1985-),男,四川人,讲师,博士,主要从事地震工程与结构抗震设计研究(E-mail:baijiulin@cqu.edu.cn).

  • 中图分类号: TU313.3;TU375.4

STRONG-COLUMN WEAK-BEAM GLOBAL SEISMIC FAILURE MODE CONTROL-BASED DESIGN OF REINFORCED CONCRETE FRAME STRUCTURES

  • 摘要: 该文发展了钢筋混凝土框架结构强柱弱梁地震整体失效模式可控设计方法。基于能量平衡概念和塑性内力设计机制,提出了改进的能量平衡方程和塑性内力设计方法来实现具有不同滞回性能结构在不同设防烈度下的结构设计。设计了4个具有不同几何配置的结构,并研究了结构沿楼高的强柱弱梁系数分布。分别对结构进行Pushover分析和22条地震下的大震弹塑性时程分析,研究了结构的整体能力曲线、屈服机制、最大层间位移角分布和柱端弯矩需求。分析结果表明,该文所提方法不需要任何迭代便能实现结构预期的抗震性能和整体失效模式,克服了传统抗震设计需不断试凑迭代来满足抗震性能的缺点。
    Abstract: A strong-column weak beam global seismic failure mode control-based design approach is developed for reinforced concrete (RC) frame structures. Based on the concept of energy balance and plastic internal force mechanism, a modified energy balance equation and design method for plastic internal forces are proposed to achieve the seismic design of structures with different hysteretic behaviour for multiple different seismic hazard levels. Four RC frame structures with different geometry configurations are designed and the distribution of strong-column weak-beam ratio along the height is investigated. Pushover analyses and nonlinear time history analyses under 22 ground motions for severe seismic hazard level are conducted, and the global capacity curves, yield mechanism, maximum inter-story drift ratio distribution as well as the moment demands of column ends are studied. The analytical results indicate that the proposed method can achieve the desired seismic performance and global failure mode without any iterations, avoiding the shortcoming of conventional seismic design method which employs the trial an error strategy to achieve the required seismic performance.
  • [1] Ou J P, Li H. The regional engineering damage and reconstruction strategy in Wenchuan earthquake of China[J]. Journal of Earthquake and Tsunami, 2011, 5(2):189-216.
    [2] 清华大学、西南交通大学和北京交通大学土木工程结构专家组. 汶川地震建筑震害分析[J]. 建筑结构学报, 2008, 29(4):1-9. Civil and Structural Groups of Tsinghua University, Xinan Jiaotong University and Beijing Jiaotong University. Analysis on seismic damage of buildings in the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4):1-9. (in Chinese)
    [3] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [4] International Code Council. International building code[S]. Birmingham, Ala., 2006.
    [5] NRCC. National building code of Canada[S]. Associate Committee on the National Building Code, National Research Council of Canada, Ottawa, Ont., 2010.
    [6] European Committee for Standardization, Eurocode 8:design of structures for earthquake resistance-part 1:general rules, seismic actions and rules for buildings[S]. CEN, Brussels, Belgium, 1998.
    [7] 白久林. 钢筋混凝土框架结构地震主要失效模式分析与优化[D]. 哈尔滨:哈尔滨工业大学, 2015. Bai Jiulin. Main seismic failure mode analyses and optimization of reinforced concrete frame structures[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
    [8] 孙宝印, 古泉, 张沛洲, 欧进萍. 钢筋混凝土框架结构弹塑性数值子结构分析方法[J]. 工程力学, 2016, 33(5):44-49. Sun Baoyin, Gu Quan, Zhang Peizhou, Ou Jinping. Elastoplastic numerical substructure method of reinforced concrete frame structures[J]. Engineering Mechanics, 2016, 33(5):44-49. (in Chinese)
    [9] Bai J L, Jin S S, Zhang C, et al. Seismic optimization design for uniform damage of reinforced concrete moment-resisting frames using consecutive modal pushover analysis[J]. Advances in Structural Engineering, 2016, 19(8):1313-1327.
    [10] 叶列平, 马千里, 缪志伟. 钢筋混凝土框架结构强柱弱梁设计方法的研究[J]. 工程力学, 2010, 27(12):102-113. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on the weak beam-strong column design method of RC frame structures[J]. Engineering Mechanics, 2010, 27(12):102-113. (in Chinese)
    [11] 滕军, 曹冬雪, 李祚华, 吕海霞. 框架结构强柱弱梁地震破坏模式形成探讨[J]. 建筑结构, 2011, 41(增刊1):285-290. Teng Jun, Cao Dongxue, Li Zuohua, Lü Haixia. Disscussion on frame structure strong column weak beams pattern formation of earthquake damage[J]. Building Structures, 2011, 41(Suppl 1):285-290. (in Chinese)
    [12] Mazzolani F M, Piluso V. Plastic design of seismic resistant steel frames[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(2):167-191.
    [13] Leelataviwat S, Goel S C, Bozidar Stojadinovic. Energy-based seismic design of structures using yield mechanism and target drift[J]. Journal of Structural Engineering, 2002, 128(8):1046-1054.
    [14] Goel S C, Chao S H. Performance-based plastic design:Earthquake-resistant steel structures[M]. Washington, DC:International Code Council, 2008:1-35.
    [15] Goel S C, Liao W C, Bayat M R, et al. Performance-based plastic design (PBPD) method for earthquake-resistant structures:an overview[J]. The Structural Design of Tall and Special Building, 2010, 19(1):115-137.
    [16] 白久林, 欧进萍. 基于能量平衡的钢筋混凝土框架结构抗震塑性极限设计方法[J]. 建筑结构学报, 2012, 33(10):22-31. Bai Jiulin, Ou Jinping. Seismic plastic design of RC frame structure based on energy balance[J]. Journal of Building Structures, 2012, 33(10):22-31. (in Chinese)
    [17] Chao S H, Goel S C, Lee S S. A seismic design lateral force distribution based on inelastic state of structures[J]. Earthquake Spectra, 2007, 23(3):547-569.
    [18] 白久林, 杨乐, 欧进萍. 基于等损伤的钢框架结构抗震性能优化[J]. 工程力学, 2015, 32(6):76-83. Bai Jiulin, Yang Le, Ou Jinping. Aseismic performance optimization of steel frame structures based on the uniform damage concept[J]. Engineering Mechanics, 2015, 32(6):76-83. (in Chinese)
    [19] OpenSees. Open system for earthquake engineering simulation, OpenSees framework Version 2.4.0[CP]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, http://opensees.berkeley.edu, 2012.
    [20] FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings[S]. FEMA, Washington (DC), 2000.
  • 期刊类型引用(3)

    1. 郑山锁,桑子蔚,周炎. 酸雨环境下低矮RC剪力墙抗震性能试验研究与抗剪强度预测. 工程力学. 2023(03): 213-224 . 本站查看
    2. 杜永峰,张天允,李虎. 内壁锈蚀灌浆套筒与灌浆料黏结性能试验研究. 工业建筑. 2021(11): 75-80 . 百度学术
    3. 秦卿,郑山锁,丁莎. 盐雾环境下一字型短肢RC剪力墙抗震性能试验. 工程力学. 2020(06): 79-91 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  595
  • HTML全文浏览量:  42
  • PDF下载量:  868
  • 被引次数: 11
出版历程
  • 收稿日期:  2016-03-10
  • 修回日期:  2016-06-30
  • 刊出日期:  2017-08-24

目录

    /

    返回文章
    返回