[1] |
Eads L, Miranda E, Krawinkler H, Lignos D G. Improved estimation of collapse risk for structures in seismic regions[C]. 15WCEE, LISBOA, 2012. No.2862
|
[2] |
党争, 梁兴文, 邓明科, 等. 局部采用纤维增强混凝土剪力墙压弯性能研究[J]. 工程力学, 2015, 32(2):120-130. Dang Zheng, Liang Xingwen, Deng Mingke, et al. The compression-bending behavior of shear wall with fiberreinforced concrete in bottom region[J]. Engineering Mechanics, 2015, 32(2):120-130. (in Chinese)
|
[3] |
梁兴文, 康力, 车佳玲, 等. 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30(9):243-250. Liang Xingwen, Kang Li, Che Jialing, et al. Experiments and analysis of seismic behavior of columns with fiberreinforced concrete in bottom region[J]. Engineering Mechanics, 2013, 30(9):243-250. (in Chinese)
|
[4] |
梁兴文, 王英俊, 邢朋涛, 等. 局部采用纤维增强混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2016, 33(4):67-76. Liang Xingwen, Wang Yingjun, Xing Pengtao, et al. Experimental study on seismic performance of beam-column joints with fiber-reinforced concrete in joint core and plastic hinge zone of beam and column end[J]. Engineering Mechanics, 2016, 33(4):67-76. (in Chinese)
|
[5] |
Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3):491-514.
|
[6] |
施炜, 叶列平, 陆新征. 基于一致倒塌风险的建筑抗震评价方法研究[J]. 建筑结构学报, 2012, 33(6):1-7. Shi Wei, Ye Lieping, Lu Xinzheng. Study on uniform collapse risk evaluation method for building structures under earthquakes[J]. Journal of Building Structures, 2012, 33(6):1-7. (in Chinese)
|
[7] |
陆新征, 叶列平. 基于IDA分析的结构抗倒塌能力研究[J]. 工程抗震与加固改造, 2010, 32(1):13-18. Lu Xinzheng,Ye Lieping. Study on the seismic collapse resistance of structural system[J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1):13-18. (in Chinese)
|
[8] |
Eads L, Miranda E, Krawinkler H, Lignos D G. An efficient method for estimating the collapse risk of structures in seismic regions[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(10):25-41.
|
[9] |
于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨:哈尔滨工业大学, 2012. Yu Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
|
[10] |
Cornell C A. Risk-based structural design[C]. Proceedings of Symposium on Risk Analysis, Nowak A., Ed., Department of Civil Engineering, University of Michigan, 1994:37-48.
|
[11] |
施炜, 叶列平, 陆新征, 唐代远. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3):41-48, 68. Shi Wei, Ye Lieping, Lu Xinzheng, Tang Daiyuan. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(3):41-48, 68. (in Chinese)
|
[12] |
于晓辉, 吕大刚. 基于地震易损性解析函数的概率地震风险应用研究[J]. 建筑结构学报, 2013, 34(10):49-56. Yu Xiaohui, Lü Dagang. Application study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10):49-56. (in Chinese)
|
[13] |
Liel A B. Assessing the collapse risk of California's existing reinforced concrete frame structures:Metrics for seismic safety decisions[D]. California:Stanford University, 2008.
|
[14] |
Deierlein G G, Liel A B. Benefit-Cost evaluation of seismic risk mitigation in existing non-ductile concrete buildings[J]. Advances in Performance-Based Earthquake Engineering Geotechnical, Geological and Earthquake Engineering, 2010, 13(12):341-348.
|
[15] |
Ibarra L F, Krawinkler H. Global collapse of frame structures under seismic excitations[R]. Report No. 152, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 2005.
|
[16] |
Ghafory-Ashtiany M, Mousavi M, Azarbakht A. Strong ground motion record selection for the reliable prediction of the mean seismic collapse capacity of a structure group[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(6):691-708.
|
[17] |
Bradley B A, Dhakal R P. Error estimation of closedform solution for annual rate of structural collapse[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(15):1721-1737.
|
[18] |
Shafei B, Zareian F, Lignos D G. A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems[J]. Engineering Structures, 2011, 33(4):1107-1116.
|
[19] |
Applied Technology Council (ATC). Effects of strength and stiffness degradation on seismic response[S]. FEMA P440A. Federal Emergency Management Agency (FEMA):Washington, D C, 2009.
|
[20] |
黄超, 梁兴文, 党争, 等. FRC框架结构基于等效单自由度模型的抗地震倒塌能力评估[J]. 工程力学, 2016, 33(2):127-135. Huang Chao, Liang Xingwen, Dang Zheng, et al. Evaluation of seismic collapse capacity of FRC frame structures based on the methodology of equivalent SDOF systems[J]. Engineering Mechanics, 2016, 33(2):127-135. (in Chinese)
|
[21] |
李艳. 高性能纤维增强水泥基复合材料的力学性能研究[D]. 西安:西安建筑科技大学, 2011. Li Yan. Study on mechanical performance of high performance fiber reinforced cement composite[D]. Xi'an:Xi'an University of Architecture and Technology, 2011. (in Chinese)
|
[22] |
FEMA P-695(2009). Quantification of building seismic performance factor[R]. Federal Emergency Management Agency, Washington, D C, 2009.
|
[23] |
Federal Emergency Management Agency. Recommended seismic design and criteria for new steel moment-frame building[R]. Report No.FEMA-350, SAC Joint Venture, Federal Emergency Management Agency Washington, D C, 2000.
|
[24] |
FEMA 273. NEHPR guidelines for the seismic rehabilitation of buildings[S]. Washington, D C:Federal Emergency Management Agency, ASCE, 1997.
|
[25] |
GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
|