FRC框架结构地震风险评估的简化方法

黄超, 梁兴文

黄超, 梁兴文. FRC框架结构地震风险评估的简化方法[J]. 工程力学, 2017, 34(7): 117-125. DOI: 10.6052/j.issn.1000-4750.2016.01.0062
引用本文: 黄超, 梁兴文. FRC框架结构地震风险评估的简化方法[J]. 工程力学, 2017, 34(7): 117-125. DOI: 10.6052/j.issn.1000-4750.2016.01.0062
HUANG Chao, LIANG Xing-wen. A SIMPLIFIED METHOD FOR EVALUATING THE SEISMIC RISK OF FRC FRAME STRUCTURES[J]. Engineering Mechanics, 2017, 34(7): 117-125. DOI: 10.6052/j.issn.1000-4750.2016.01.0062
Citation: HUANG Chao, LIANG Xing-wen. A SIMPLIFIED METHOD FOR EVALUATING THE SEISMIC RISK OF FRC FRAME STRUCTURES[J]. Engineering Mechanics, 2017, 34(7): 117-125. DOI: 10.6052/j.issn.1000-4750.2016.01.0062

FRC框架结构地震风险评估的简化方法

基金项目: 国家自然科学基金项目(51278402,51078305)
详细信息
    作者简介:

    黄超(1992-),男,江西宜春人,硕士生,从事建筑结构抗震性能研究(E-mail:huangchao7843@163.com).

    通讯作者:

    梁兴文(1952-),男,陕西华县人,教授,硕士,从事建筑结构及抗震研究(E-mail:liangxingwen2000@163.com).

  • 中图分类号: TU311.2;TU375.4

A SIMPLIFIED METHOD FOR EVALUATING THE SEISMIC RISK OF FRC FRAME STRUCTURES

  • 摘要: 对结构地震风险进行精细的量化分析成为在直接财产损失、居住中断时间、死亡人数评估中必不可少的部分。该文首先用增量动力分析(IDA)法对纤维增强混凝土(FRC)框架结构进行动力时程分析,获得其IDA曲线,据此确定结构的地震易损性曲线,并由此考虑知识不确定性,确定考虑知识不确定性的易损性曲线;按考虑知识不确定性的易损性曲线与地震危险性曲线相结合,进行风险评估;然后基于Laura Eads等提出的评估地震风险的简化方法来进行风险评估。分别对按我国规范设计的8层FRC框架结构和钢筋混凝土(RC)框架结构进行分析。结果表明:采用简化方法得到的FRC框架和RC框架结构的倒塌风险均偏大,误差分别为5.7%和8.0%,对于结构风险评估是可行和偏于保守的。
    Abstract: Seismic risk quantification has become necessary as it is a required component in estimating direct monetary losses, downtime, and fatalities. Firstly, dynamic history analysis was conducted on a Fiber Reinforced Concrete (FRC) structure by means of incremental dynamic analysis (IDA) method in the paper, and an IDA curve was attained. On the basis of this IDA curve, the seismic fragility curve was derived. According to the seismic fragility curve and the epistemic uncertainty, the seismic fragility curve considering epistemic uncertainty was determined. Combining the seismic fragility curve considering epistemic uncertainty with the seismic hazard curve, the seismic risk was then evaluated. Then, an evaluation procedure of seismic risk of structures is presented in the paper, which is based on the simplified methodology proposed by Laura Eads. An 8-story FRC framed structure and an 8-story reinforced concrete (RC) framed structure which were designed according to the current Chinese codes were analyzed. The results show that the seismic risk with the simplified methodology is higher than that with the existing methodology for both the FRC framed structure and the RC framed structure, the errors were 5.7% and 8.0% respectively, and it is feasible and conservative to use the simplified methodology to evaluate the seismic risk.
  • [1] Eads L, Miranda E, Krawinkler H, Lignos D G. Improved estimation of collapse risk for structures in seismic regions[C]. 15WCEE, LISBOA, 2012. No.2862
    [2] 党争, 梁兴文, 邓明科, 等. 局部采用纤维增强混凝土剪力墙压弯性能研究[J]. 工程力学, 2015, 32(2):120-130. Dang Zheng, Liang Xingwen, Deng Mingke, et al. The compression-bending behavior of shear wall with fiberreinforced concrete in bottom region[J]. Engineering Mechanics, 2015, 32(2):120-130. (in Chinese)
    [3] 梁兴文, 康力, 车佳玲, 等. 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30(9):243-250. Liang Xingwen, Kang Li, Che Jialing, et al. Experiments and analysis of seismic behavior of columns with fiberreinforced concrete in bottom region[J]. Engineering Mechanics, 2013, 30(9):243-250. (in Chinese)
    [4] 梁兴文, 王英俊, 邢朋涛, 等. 局部采用纤维增强混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2016, 33(4):67-76. Liang Xingwen, Wang Yingjun, Xing Pengtao, et al. Experimental study on seismic performance of beam-column joints with fiber-reinforced concrete in joint core and plastic hinge zone of beam and column end[J]. Engineering Mechanics, 2016, 33(4):67-76. (in Chinese)
    [5] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3):491-514.
    [6] 施炜, 叶列平, 陆新征. 基于一致倒塌风险的建筑抗震评价方法研究[J]. 建筑结构学报, 2012, 33(6):1-7. Shi Wei, Ye Lieping, Lu Xinzheng. Study on uniform collapse risk evaluation method for building structures under earthquakes[J]. Journal of Building Structures, 2012, 33(6):1-7. (in Chinese)
    [7] 陆新征, 叶列平. 基于IDA分析的结构抗倒塌能力研究[J]. 工程抗震与加固改造, 2010, 32(1):13-18. Lu Xinzheng,Ye Lieping. Study on the seismic collapse resistance of structural system[J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1):13-18. (in Chinese)
    [8] Eads L, Miranda E, Krawinkler H, Lignos D G. An efficient method for estimating the collapse risk of structures in seismic regions[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(10):25-41.
    [9] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨:哈尔滨工业大学, 2012. Yu Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
    [10] Cornell C A. Risk-based structural design[C]. Proceedings of Symposium on Risk Analysis, Nowak A., Ed., Department of Civil Engineering, University of Michigan, 1994:37-48.
    [11] 施炜, 叶列平, 陆新征, 唐代远. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3):41-48, 68. Shi Wei, Ye Lieping, Lu Xinzheng, Tang Daiyuan. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(3):41-48, 68. (in Chinese)
    [12] 于晓辉, 吕大刚. 基于地震易损性解析函数的概率地震风险应用研究[J]. 建筑结构学报, 2013, 34(10):49-56. Yu Xiaohui, Lü Dagang. Application study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10):49-56. (in Chinese)
    [13] Liel A B. Assessing the collapse risk of California's existing reinforced concrete frame structures:Metrics for seismic safety decisions[D]. California:Stanford University, 2008.
    [14] Deierlein G G, Liel A B. Benefit-Cost evaluation of seismic risk mitigation in existing non-ductile concrete buildings[J]. Advances in Performance-Based Earthquake Engineering Geotechnical, Geological and Earthquake Engineering, 2010, 13(12):341-348.
    [15] Ibarra L F, Krawinkler H. Global collapse of frame structures under seismic excitations[R]. Report No. 152, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 2005.
    [16] Ghafory-Ashtiany M, Mousavi M, Azarbakht A. Strong ground motion record selection for the reliable prediction of the mean seismic collapse capacity of a structure group[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(6):691-708.
    [17] Bradley B A, Dhakal R P. Error estimation of closedform solution for annual rate of structural collapse[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(15):1721-1737.
    [18] Shafei B, Zareian F, Lignos D G. A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems[J]. Engineering Structures, 2011, 33(4):1107-1116.
    [19] Applied Technology Council (ATC). Effects of strength and stiffness degradation on seismic response[S]. FEMA P440A. Federal Emergency Management Agency (FEMA):Washington, D C, 2009.
    [20] 黄超, 梁兴文, 党争, 等. FRC框架结构基于等效单自由度模型的抗地震倒塌能力评估[J]. 工程力学, 2016, 33(2):127-135. Huang Chao, Liang Xingwen, Dang Zheng, et al. Evaluation of seismic collapse capacity of FRC frame structures based on the methodology of equivalent SDOF systems[J]. Engineering Mechanics, 2016, 33(2):127-135. (in Chinese)
    [21] 李艳. 高性能纤维增强水泥基复合材料的力学性能研究[D]. 西安:西安建筑科技大学, 2011. Li Yan. Study on mechanical performance of high performance fiber reinforced cement composite[D]. Xi'an:Xi'an University of Architecture and Technology, 2011. (in Chinese)
    [22] FEMA P-695(2009). Quantification of building seismic performance factor[R]. Federal Emergency Management Agency, Washington, D C, 2009.
    [23] Federal Emergency Management Agency. Recommended seismic design and criteria for new steel moment-frame building[R]. Report No.FEMA-350, SAC Joint Venture, Federal Emergency Management Agency Washington, D C, 2000.
    [24] FEMA 273. NEHPR guidelines for the seismic rehabilitation of buildings[S]. Washington, D C:Federal Emergency Management Agency, ASCE, 1997.
    [25] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
  • 期刊类型引用(6)

    1. 李波,许亚男,严国虔,阳绪,张云浩. 框架结构考虑钢筋腐蚀的地震风险评估方法. 建筑科学与工程学报. 2024(05): 52-62 . 百度学术
    2. 杨维国,邹晓光,葛家琪,刘佩,王萌,李昊,马伯涛. 单向地震作用下浮放文物倾覆风险评估方法研究. 建筑结构学报. 2023(08): 11-23 . 百度学术
    3. 杨鹏辉,梁兴文,辛力,何伟. HPFRC耗能墙-RC框架结构地震易损性分析. 建筑材料学报. 2022(03): 270-277 . 百度学术
    4. 叶继红,江力强. 考虑多重不确定性的我国多层冷成型钢结构地震风险评估. 土木工程学报. 2021(02): 74-83+126 . 百度学术
    5. 王英俊,梁兴文. 预期损伤部位采用FRC框架结构地震易损性分析. 建筑结构. 2020(S1): 485-490 . 百度学术
    6. 刘春霖,范俊余,陈昭晖. 结构抗爆防护措施经济决策模型. 工程力学. 2018(11): 99-105 . 本站查看

    其他类型引用(19)

计量
  • 文章访问数:  375
  • HTML全文浏览量:  46
  • PDF下载量:  92
  • 被引次数: 25
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2017-04-25
  • 刊出日期:  2017-07-24

目录

    /

    返回文章
    返回