桥梁系统地震易损性分析的混合Copula函数方法

宋帅, 钱永久, 吴刚

宋帅, 钱永久, 吴刚. 桥梁系统地震易损性分析的混合Copula函数方法[J]. 工程力学, 2017, 34(1): 219-227. DOI: 10.6052/j.issn.1000-4750.2015.12.1030
引用本文: 宋帅, 钱永久, 吴刚. 桥梁系统地震易损性分析的混合Copula函数方法[J]. 工程力学, 2017, 34(1): 219-227. DOI: 10.6052/j.issn.1000-4750.2015.12.1030
SONG Shuai, QIAN Yong-jiu, WU Gang. MIXED COPULA FUNCTION METHOD FOR SEISMIC FRAGILITY ANALYSIS OF BRIDGE SYSTEM[J]. Engineering Mechanics, 2017, 34(1): 219-227. DOI: 10.6052/j.issn.1000-4750.2015.12.1030
Citation: SONG Shuai, QIAN Yong-jiu, WU Gang. MIXED COPULA FUNCTION METHOD FOR SEISMIC FRAGILITY ANALYSIS OF BRIDGE SYSTEM[J]. Engineering Mechanics, 2017, 34(1): 219-227. DOI: 10.6052/j.issn.1000-4750.2015.12.1030

桥梁系统地震易损性分析的混合Copula函数方法

基金项目: 国家自然科学基金项目(51178395)
详细信息
    作者简介:

    宋帅(1987-),男,河南人,博士生,主要从事桥梁易损性研究(E-mail:shuaissw@126.com)

    通讯作者:

    钱永久(1963-),男,湖北人,教授,博士,博导,主要从事既有结构的检测与加固研究(E-mail:yjqian@sina.com);吴刚(1988-),男,江西人,博士生,主要从事桥梁结构抗震研究(E-mail:wugang523@126.com)

  • 中图分类号: U441;U442.55

MIXED COPULA FUNCTION METHOD FOR SEISMIC FRAGILITY ANALYSIS OF BRIDGE SYSTEM

  • 摘要: 为了在桥梁系统易损性分析中考虑构件地震需求之间相关性的影响,采用贝叶斯加权平均方法构造混合Copula函数,将构件地震需求之间的相关结构和各构件的边缘分布函数进行分离;结合增量动力分析,建立了桥墩、支座等单个构件的易损性曲线及联合分布函数,提出了考虑构件地震需求相关性的桥梁系统易损性分析方法。结果表明:混合Copula函数能够准确描述构件地震需求间上、下尾相关并存的非对称相关结构,简化构件地震需求联合分布函数的建模过程;与Monte Carlo抽样方法相比,二者得到的桥梁系统易损性吻合良好,且混合Copula函数方法避免了大量的数值抽样,显著提高系统易损性分析的计算效率。
    Abstract: In order to consider the impacts of seismic demand dependence among structural components in the seismic fragility analysis of bridge system, a mixed Copula function is constructed by using Bayesian Model Average method, and then the dependence structure is separated from the marginal distribution functions of components. In combination with incremental dynamic analysis, the fragility curves and joint distribution functions of piers and bearings are developed. And a method for calculating the fragility of bridge system is proposed, which takes the seismic demand dependence among structural components into consideration. The results indicate that mixed Copula function can accurately depict the asymmetric dependence between the upper and lower tail distributions of the seismic demands of bridge components and simplify the modeling procedure of joint probability distribution function. A comparison between the system fragility curves obtained by the proposed method and those derived using Monte Carlo method shows good agreement. In addition, the computational efficiency is significantly improved by the mixed Copula function method because it significantly reduces the number of numerical samples.
  • [1] Billah A M M M, Alam M S. Seismic fragility assessment of highway bridges:a state-of-the-art review[J]. Structure And Infrastructure Engineering, 2015, 11(6):804-832.
    [2] Yang C S W, Werner S D, DesRoches R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83:116-128.
    [3] Av?ar Ö, Yakut A, Caner A. Analytical fragility curves for ordinary highway bridges in Turkey[J]. Earthquake Spectra, 2011, 27(4):971-996.
    [4] Agrawal A K, Ghosn M, Alampalli S, et al. Seismic fragility of retrofitted multispan continuous steel bridges in New York[J]. Journal of Bridge Engineering-ASCE, 2012, 17(4):562-575.
    [5] Taskari O, Sextos A. Multi-angle, multi-damage fragility curves for seismic assessment of bridges[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(13):2281-2301.
    [6] Tavares D H, Suescun J R, Paultre P, et al. Seismic fragility of a highway bridge in Quebec[J]. Journal of Bridge Engineering-ASCE, 2013, 18(11):1131-1139.
    [7] Nielson B G, DesRoches R. Seismic fragility methodology for highway bridges using a component level approach[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(6):823-839.
    [8] 沈国煜, 袁万城, 庞于涛. 基于Nataf变换的桥梁结构地震易损性分析[J]. 工程力学, 2014, 31(6):93-100. Shen Guoyu, Yuan Wancheng, Pang Yutao. Bridge seismic fragility analysis based on Nataf transformation[J]. Engineering Mechanics, 2014, 31(6):93-100. (in Chinese)
    [9] Lebrun R, Dutfoy A. An innovating analysis of the Nataf transformation from the copula viewpoint[J]. Probabilistic Engineering Mechanics, 2009, 24(3):312-320.
    [10] 李典庆, 唐小松, 周创兵, 等. 基于Copula函数的并联结构系统可靠度分析[J]. 工程力学, 2014, 31(8):32-40. Li Dianqing, Tang Xiaosong, Zhou Chuangbing, et al. Parallel structural system reliability analysis from the copula viewpoint[J]. Engineering Mechanics, 2014, 31(8):32-40. (in Chinese)
    [11] Hong H P, Zhou W, Zhang S, et al. Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components[J]. Reliability Engineering and System Safety, 2014, 121:276-288.
    [12] Ghosh S. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighboring meteorological subdivisions using copula[J]. Hydrological Processes, 2010, 24(24):3558-3567.
    [13] Li D Q, Tang X S, Phoon K K, et al. Bivariate simulation using copula and its application to probabilistic pile settlement analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(6):597-617.
    [14] Goda K, Tesfamariam S. Multi-variate seismic demand modelling using copulas:application to non-ductile reinforced concrete frame in Victoria, Canada[J]. Structural Safety, 2015, 56:39-51.
    [15] Madadgar S, Moradkhani H. Improved Bayesian multimodeling:integration of copulas and Bayesian model averaging[J]. Water Resources Research, 2014, 50(12):9586-9603.
    [16] Jara J M, Galván A, Jara M, et al. Procedure for determining the seismic vulnerability of an irregular isolated bridge[J]. Structure and Infrastructure Engineering, 2013, 9(6):516-528.
    [17] Zakeri B, Padgett J E, Amiri G G. Fragility assessment for seismically retrofitted skewed reinforced concrete box girder bridges[J]. Journal of Performance of Constructed Facilities, 2015, 29(2):1-11.
    [18] Nelsen R B. An introduction to Copulas[M]. New York:Springer, 2006:157-225.
    [19] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal, 1982, 79(1):13-27.
    [20] Menegotto M, Pinto, P E. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending[C]. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich, Switzerland:International Association for Bridge and Structural Engineering, 1973:15-22.
    [21] Parool N, Rai, D. Seismic fragility of multispan simply supported bridge with drop spans and steel bearings[J]. Journal of Bridge Engineering-ASCE, 2015, 20(12):04015021.
    [22] 郑凯锋, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5):165-171. Zheng Kaifeng, Chen Libo, Zhuang Weilin, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(5):165-171. (in Chinese)
    [23] Mackie K R, Cronin K J, Nielson B G. Response sensitivity of highway bridges to randomly oriented multi-component earthquake excitation[J]. Journal of Earthquake Engineering, 2011, 15(6):850-876.
    [24] Pan Y, Agrawal A K, Ghosn M, et al. Seismic fragility of multi-span simply supported steel highway bridges in New York State. I:bridge modeling, parametric analysis, and retrofit design[J]. Journal of Bridge Engineering-ASCE, 2010, 15(5):448-461.
    [25] Vo?echovský M. Hierarchical Refinement of latin hypercube samples[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(5):394-411.
    [26] 李宁, 李杨, 李忠献. 基于向量IM的钢筋混凝土桥墩地震易损性分析[J]. 工程力学, 2016, 33(1):58-63, 71. Li Ning, Li Yang, Li Zhongxian. Seismic vulnerability analysis of reinforced concrete bridge piers based on vector-valued intensity measure[J]. Engineering Mechanics, 2016, 33(1):58-63, 71. (in Chinese)
    [27] Nielson B G. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Atlanta, GA:Georgia Institute of Technology, 2005:217-221.
计量
  • 文章访问数:  379
  • HTML全文浏览量:  34
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-27
  • 修回日期:  2016-05-28
  • 刊出日期:  2017-01-24

目录

    /

    返回文章
    返回