[1] |
Billah A M M M, Alam M S. Seismic fragility assessment of highway bridges:a state-of-the-art review[J]. Structure And Infrastructure Engineering, 2015, 11(6):804-832.
|
[2] |
Yang C S W, Werner S D, DesRoches R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83:116-128.
|
[3] |
Av?ar Ö, Yakut A, Caner A. Analytical fragility curves for ordinary highway bridges in Turkey[J]. Earthquake Spectra, 2011, 27(4):971-996.
|
[4] |
Agrawal A K, Ghosn M, Alampalli S, et al. Seismic fragility of retrofitted multispan continuous steel bridges in New York[J]. Journal of Bridge Engineering-ASCE, 2012, 17(4):562-575.
|
[5] |
Taskari O, Sextos A. Multi-angle, multi-damage fragility curves for seismic assessment of bridges[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(13):2281-2301.
|
[6] |
Tavares D H, Suescun J R, Paultre P, et al. Seismic fragility of a highway bridge in Quebec[J]. Journal of Bridge Engineering-ASCE, 2013, 18(11):1131-1139.
|
[7] |
Nielson B G, DesRoches R. Seismic fragility methodology for highway bridges using a component level approach[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(6):823-839.
|
[8] |
沈国煜, 袁万城, 庞于涛. 基于Nataf变换的桥梁结构地震易损性分析[J]. 工程力学, 2014, 31(6):93-100. Shen Guoyu, Yuan Wancheng, Pang Yutao. Bridge seismic fragility analysis based on Nataf transformation[J]. Engineering Mechanics, 2014, 31(6):93-100. (in Chinese)
|
[9] |
Lebrun R, Dutfoy A. An innovating analysis of the Nataf transformation from the copula viewpoint[J]. Probabilistic Engineering Mechanics, 2009, 24(3):312-320.
|
[10] |
李典庆, 唐小松, 周创兵, 等. 基于Copula函数的并联结构系统可靠度分析[J]. 工程力学, 2014, 31(8):32-40. Li Dianqing, Tang Xiaosong, Zhou Chuangbing, et al. Parallel structural system reliability analysis from the copula viewpoint[J]. Engineering Mechanics, 2014, 31(8):32-40. (in Chinese)
|
[11] |
Hong H P, Zhou W, Zhang S, et al. Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components[J]. Reliability Engineering and System Safety, 2014, 121:276-288.
|
[12] |
Ghosh S. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighboring meteorological subdivisions using copula[J]. Hydrological Processes, 2010, 24(24):3558-3567.
|
[13] |
Li D Q, Tang X S, Phoon K K, et al. Bivariate simulation using copula and its application to probabilistic pile settlement analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(6):597-617.
|
[14] |
Goda K, Tesfamariam S. Multi-variate seismic demand modelling using copulas:application to non-ductile reinforced concrete frame in Victoria, Canada[J]. Structural Safety, 2015, 56:39-51.
|
[15] |
Madadgar S, Moradkhani H. Improved Bayesian multimodeling:integration of copulas and Bayesian model averaging[J]. Water Resources Research, 2014, 50(12):9586-9603.
|
[16] |
Jara J M, Galván A, Jara M, et al. Procedure for determining the seismic vulnerability of an irregular isolated bridge[J]. Structure and Infrastructure Engineering, 2013, 9(6):516-528.
|
[17] |
Zakeri B, Padgett J E, Amiri G G. Fragility assessment for seismically retrofitted skewed reinforced concrete box girder bridges[J]. Journal of Performance of Constructed Facilities, 2015, 29(2):1-11.
|
[18] |
Nelsen R B. An introduction to Copulas[M]. New York:Springer, 2006:157-225.
|
[19] |
Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal, 1982, 79(1):13-27.
|
[20] |
Menegotto M, Pinto, P E. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending[C]. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich, Switzerland:International Association for Bridge and Structural Engineering, 1973:15-22.
|
[21] |
Parool N, Rai, D. Seismic fragility of multispan simply supported bridge with drop spans and steel bearings[J]. Journal of Bridge Engineering-ASCE, 2015, 20(12):04015021.
|
[22] |
郑凯锋, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5):165-171. Zheng Kaifeng, Chen Libo, Zhuang Weilin, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(5):165-171. (in Chinese)
|
[23] |
Mackie K R, Cronin K J, Nielson B G. Response sensitivity of highway bridges to randomly oriented multi-component earthquake excitation[J]. Journal of Earthquake Engineering, 2011, 15(6):850-876.
|
[24] |
Pan Y, Agrawal A K, Ghosn M, et al. Seismic fragility of multi-span simply supported steel highway bridges in New York State. I:bridge modeling, parametric analysis, and retrofit design[J]. Journal of Bridge Engineering-ASCE, 2010, 15(5):448-461.
|
[25] |
Vo?echovský M. Hierarchical Refinement of latin hypercube samples[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(5):394-411.
|
[26] |
李宁, 李杨, 李忠献. 基于向量IM的钢筋混凝土桥墩地震易损性分析[J]. 工程力学, 2016, 33(1):58-63, 71. Li Ning, Li Yang, Li Zhongxian. Seismic vulnerability analysis of reinforced concrete bridge piers based on vector-valued intensity measure[J]. Engineering Mechanics, 2016, 33(1):58-63, 71. (in Chinese)
|
[27] |
Nielson B G. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Atlanta, GA:Georgia Institute of Technology, 2005:217-221.
|