耗能伸臂桁架抗震性能的试验研究

杨青顺, 甄伟, 解琳琳, 陆新征

杨青顺, 甄伟, 解琳琳, 陆新征. 耗能伸臂桁架抗震性能的试验研究[J]. 工程力学, 2016, 33(10): 76-85. DOI: 10.6052/j.issn.1000-4750.2015.12.1013
引用本文: 杨青顺, 甄伟, 解琳琳, 陆新征. 耗能伸臂桁架抗震性能的试验研究[J]. 工程力学, 2016, 33(10): 76-85. DOI: 10.6052/j.issn.1000-4750.2015.12.1013
YANG Qing-shun, ZHEN Wei, XIE Lin-lin, LU Xin-zheng. EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF ENERGY DISSIPATION OUTRIGGERS[J]. Engineering Mechanics, 2016, 33(10): 76-85. DOI: 10.6052/j.issn.1000-4750.2015.12.1013
Citation: YANG Qing-shun, ZHEN Wei, XIE Lin-lin, LU Xin-zheng. EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF ENERGY DISSIPATION OUTRIGGERS[J]. Engineering Mechanics, 2016, 33(10): 76-85. DOI: 10.6052/j.issn.1000-4750.2015.12.1013

耗能伸臂桁架抗震性能的试验研究

基金项目: 北京市自然科学基金项目(8142024)
详细信息
    作者简介:

    杨青顺(1982-),女,青海乐都人,博士生,主要从事高层结构抗震研究(E-mail:yqss1983@163.com);甄伟(1978-),男,河北保定人,教授级高工,博士生,主要从事高层结构抗震研究(E-mail:zhenwei@biad.com.cn);解琳琳(1986-),男,江苏南通人,博士生,主要从事高层结构抗震研究(E-mail:anbloody@sina.com)

    通讯作者:

    陆新征(1978-),男,安徽芜湖人,教授,博士,主要从事结构非线性仿真研究(E-mail:luxz@tsinghua.edu.cn).

  • 中图分类号: TU352.11;TU973.31

EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF ENERGY DISSIPATION OUTRIGGERS

More Information
    Corresponding author:

    LU Xin-zheng: 10.6052/j.issn.1000-4750.2015.12.1013

  • 摘要: 该文以某8度区超高层框架-核心筒-伸臂桁架结构为工程背景,采用1:3比例缩尺,对三个不同构造形式的伸臂桁架抗震性能进行了拟静力试验研究。试验表明普通伸臂桁架由于腹杆整体屈曲,以及弦杆受弯屈服后翼缘局部失稳等原因,存在承载力退化速度快、延性差和耗能能力不足等缺点。将腹杆改为防屈曲支撑(BRB)可有效提高腹杆的耗能能力。采用截面削弱(RBS)构造形式可以有效提高弦杆的变形能力,防止受弯屈服截面翼缘发生局部失稳。而腹板焊接构造形式则在焊接处易发生低周疲劳破坏,不能充分发挥BRB的耗能作用。试验结果表明该研究提出的RBS与BRB相结合的伸臂桁架变形性能良好,滞回曲线饱满且承载力保持稳定,取得了良好的抗震设计效果。研究结果可以为伸臂桁架结构抗震设计提供参考。
    Abstract: Based on an actual building project (i.e., a super-tall frame-core-outrigger building located in zone of 8° seismic intensity), the seismic performances of three types of 1:3 scaled outriggers with different construction details are investigated through pseudo-static experiments. The experiments highlight three drawbacks of the regular outrigger, i.e., rapid degradation of bearing capacity, poor ductility and energy dissipation capacity, which are attributed to the overall buckling of web members and flexural yielding induced local buckling of flanges on the chords. Hence, web members are being replaced by buckling restrained braces (BRB) to improve the corresponding energy dissipation capacity. In addition, the reduced beam section (RBS) connection is adopted for the chords to improve the deformation capacity and prevent the flanges of chords from flexural yielding induced local buckling. The test results indicate that low-cycle fatigue damage often occurs at weld connections on the webs of chords, which hinders the fully development of the energy dissipation capacity of BRB. In contrast, the proposed outrigger with a combination of BRBs for the web members and RBS for the chords shows good seismic performance, including good deformation capacity, stable bearing capacity and sound energy dissipation capacity. The outcomes of this work will provide a useful reference for the seismic design of outriggers.
  • [1] 徐培福, 黄吉锋, 肖从真, 等. 带加强层的框架-核心筒结构抗震设计中的几个问题[J]. 建筑结构学报, 1998, 20(4):2-10. Xu Peifu, Huang Jifeng, Xiao Congzhen, et al. Some problems in aseismic design of frame-core wall structures with strengthened storeys[J]. Journal of Building Structures, 1998, 20(4):2-10. (in Chinese)
    [2] 邹昀, 吕西林, 朱杰江. 基于性能的抗震设计方法在某复杂超高层结构中的应用研究[J]. 工程力学, 2008, 25(9):93-99. Zou Yun, Lü Xilin, Zhu Jiejiang. Application study of performance-based aseismic design to a complicated super tall building structure[J]. Engineering Mechanics, 2008, 25(9):93-99. (in Chinese)
    [3] Smith B S, Coull A. Tall building structures:analysis and design[M]. New York, USA:John Wiley & Sons, 1991.
    [4] Hoenderkamp J C D. Shear wall with outrigger trusses on wall and column foundations[J]. The Structural Design of Tall and Special Buildings, 2004, 13(1):73-87.
    [5] Hoenderkamp J C D. Second outrigger at optimum location on high-rise shear wall[J]. The Structural Design of Tall and Special Buildings, 2008, 17(3):619-634.
    [6] Kamath K, Divya N, Rao A U. A Study on static and dynamic behavior of outrigger structural system for tall buildings[J]. Bonfring International Journal of Industrial Engineering and Management Science, 2012, 4(2):15-20.
    [7] Raj Kiran Nanduri P M B, Suresh B, Ihtesham Hussain M D. Optimum position of outrigger system for high-rise reinforced concrete buildings under wind and earthquake loadings[J]. American Journal of Engineering Research, 2013, 2(8):76-89.
    [8] Lu X, Lu X Z, Guan H, Ye L P. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5):705-723.
    [9] Lu X, Lu X Z, Sezen H, Ye L P. Development of a simplified model and seismic energy dissipation in a super-tall building[J]. Engineering Structures, 2014, 67:109-122.
    [10] Lu X, Lu X Z, Zhang W K, Ye L P. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes[J]. Science China Technological Sciences, 2011, 54(10):2549-2560.
    [11] Lu X Z, Xie L L, Yu C, Lu X. Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building[J]. Engineering Structures, 2016, 110:116-126.
    [12] Jeremiah C. Application of damping in high-rise building[D]. Boston:Massachusetts Institute of Technology, 2006.
    [13] Smith R J, Willford M R. The damped outrigger concept for tall buildings[J]. The Structural Design of Tall and Special Buildings, 2007, 16(4):501-517.
    [14] 汪大洋, 周云, 王绍合. 耗能减振层对某超高层结构的减振控制研究[J]. 振动与冲击, 2011, 30(2):85-92. Wang Dayang, Zhou Yun, Wang Shaohe. Vibration reduction for a super-high structure with energy dissipation story[J]. Journal of Vibration and Shock, 2011, 30(2):85-92. (in Chinese)
    [15] Park K, Kim D, Yang D, Joung D, Ha I, Kim S. A comparison study of conventional construction methods and outrigger damper system for the compensation of differential column shortening in high-rise buildings[J]. International Journal of Steel Structures, 2010, 10(4):317-324.
    [16] Chen Y, McFarland D M, Wang Z, Spencer B F, Bergman L A. Analysis of tall buildings with damped outriggers[J]. Journal of Structural Engineering, 2010, 136(11):1435-1443.
    [17] 周颖, 吕西林, 张翠强. 消能减震伸臂桁架超高层结构抗震性能研究[J]. 振动与冲击, 2011, 30(11):186-189. Zhou Ying, Lü Xilin, Zhang Cuiqiang. Seismic performance of a super-tall building with energy dissipation outriggers[J]. Journal of Vibration and Shock, 2011, 30(11):186-189. (in Chinese)
    [18] Tan P, Fang C J, Zhou F L. Dynamic characteristics of a novel damped outrigger system[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2):293-304.
    [19] 赵宪忠, 王斌, 陈以一, 等. 上海中心大厦伸臂桁架与巨柱和核心筒连接的静力性能试验研究[J]. 建筑结构学报, 2013, 34(2):20-28. Zhao Xianzhong, Wang Bin, Chen Yiyi, et al. Monotonic static tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(2):20-28. (in Chinese)
    [20] 陈以一, 王斌, 赵宪忠, 等. 上海中心大厦伸臂桁架与巨柱和核心筒连接的抗震性能试验研究[J]. 建筑结构学报, 2013, 34(2):29-36. Chen Yiyi, Wang Bin, Zhao Xianzhong, et al. Hysteretic tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(2):29-36. (in Chinese)
    [21] 严鹏, 王伟, 陈以一. 钢管混凝土柱与伸臂桁架连接节点试验研究[J]. 工程力学, 2013, 30(增刊):78-82. Yan Peng, Wang Wei, Chen Yiyi. Experimental study on concrete filled steel tube column to outrigger truss connection[J]. Engineering Mechanics, 2013, 30(Suppl):78-82. (in Chinese)
    [22] 王斌, 陈以一, 赵宪忠. 超高层结构伸臂桁架的承载力及刚度简化计算[J]. 同济大学学报(自然科学版), 2014, 42(3):358-364. Wang Bin, Chen Yiyi, Zhao Xianzhong. A simplified model on strength and stiffness of outrigger truss in super high-rise structure[J]. Journal of Tongji University (Natural Science), 2014, 42(3):358-364. (in Chinese)
    [23] 聂建国, 丁然, 樊健生, 等. 武汉中心伸臂桁架-核心筒剪力墙节点抗震性能试验研究[J]. 建筑结构学报, 2013, 34(9):1-12. Nie Jianguo, Ding Ran, Fan Jiansheng, et al. Experimental research on seismic behavior of outrigger truss-wall joint in super high-rise building of Wuhan Center[J]. Journal of Building Structures, 2013, 34(9):1-12. (in Chinese)
    [24] 聂建国, 丁然, 樊健生. 超高层建筑伸臂桁架-核心筒剪力墙节点受力性能数值与理论研究[J]. 工程力学, 2014, 31(1):46-55. Nie Jianguo, Ding Ran, Fan Jiansheng. Numerical and theoretical research on mechanical performance of outrigger truss-wall joint in super high-rise buildings[J]. Engineering Mechanics, 2014, 31(1):46-55. (in Chinese)
    [25] 汪家铭, 中岛正爱, 陆烨. 屈曲约束支撑体系的应用与研究进展(I)[J]. 建筑钢结构进展, 2005, 7(2):1-12. Uang Chia-ming, Nakashima Masayoshi, Lu Ye. The practice and research development of buckling restrained braced frames (I)[J]. Progress in Steel Building Structures, 2005, 7(2):1-12. (in Chinese)
    [26] CTBUH Outrigger Working Group. Outrigger design for high-rise buildings[C]. Chicago:CTBUH Technical Guides, 2012:20-28.
    [27] Hamburger R O, Hooper J D, Sabol T, et al. Recommended seismic design criteria for new steel moment-frame buildings[R]. FEMA-350. SAC Joint Venture, Federal Emergency Management Agency, Washington D.C, 2000:3-38-3-43.
  • 期刊类型引用(17)

    1. 张路平,尚朝阳,陈麒丞,张浩宇,鲁军凯. 位移放大型自复位防屈曲支撑滞回性能分析与数值模拟. 黑龙江交通科技. 2024(04): 122-125+130 . 百度学术
    2. 赵玉红,杨青顺. 某超高层结构伸臂桁架在罕遇地震下的抗震性能分析. 青海大学学报. 2024(05): 72-77 . 百度学术
    3. 薛红京,束伟农. 高层建筑加强伸臂结构分析及应用. 建筑结构. 2023(18): 131-137 . 百度学术
    4. 解琳琳,陈越,李爱群,陈曦,刘谦敏. 防屈曲可更换伸臂桁架弦杆抗震性能试验研究. 工程力学. 2022(03): 96-103 . 本站查看
    5. 侯悦琪,刘洺辰,段小廿,PARKINSON Adrian. 耗能伸臂桁架及其连接设计的传力路径模型方法及其应用. 建筑结构. 2022(S1): 994-1001 . 百度学术
    6. 刘琦璇,杨参天,安楠,王心宇,刘谦敏. 含自复位伸臂桁架的超高层结构地震响应研究. 地震工程与工程振动. 2022(05): 204-210 . 百度学术
    7. 甄伟,邱意坤,杨青顺,张万开. 高层建筑中伸臂桁架的耗能性能研究. 工程力学. 2021(02): 36-43 . 本站查看
    8. 陈曦,閤东东,苏宇坤,解琳琳,伍炼红,李文峰,苗启松. 采用BRB伸臂桁架的某超高层钢结构抗震性能分析. 建筑结构. 2021(08): 37-42 . 百度学术
    9. 杨杰,杨青顺. 高烈度区框架—核心筒—伸臂桁架结构耗能分析. 青海大学学报. 2021(05): 69-76 . 百度学术
    10. 李菁. 伸臂桁架简化模型滞回曲线的模拟研究. 工程建设与设计. 2020(09): 15-16+20 . 百度学术
    11. 徐龙河,陈鹏. 自复位全钢型防屈曲支撑的工作原理与滞回特性研究. 工程力学. 2020(12): 147-156 . 本站查看
    12. 朱亚宁,林楷奇,蒋庆,林元庆,杨青顺,陆新征. 牺牲-耗能型伸臂桁架的设计和试验研究. 工程力学. 2019(02): 104-113 . 本站查看
    13. 卢啸,吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究. 工程力学. 2019(06): 138-146 . 本站查看
    14. 甄伟,张磊,张龑华,盛平,王轶. 多塔连体高层建筑连接控制方法研究. 建筑结构. 2019(18): 49-54 . 百度学术
    15. 李菁. 不同钢筋模型对简化伸臂桁架滞回模型的模拟研究. 科技创新导报. 2019(25): 56-57 . 百度学术
    16. 杨青顺,甄伟,陆新征,解琳琳,林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究. 工程力学. 2018(02): 47-58 . 本站查看
    17. 蒋庆,朱亚宁,杨青顺,甄伟,陆新征. 采用普通伸臂桁架和BRB伸臂桁架的高层建筑耗能机制对比. 建筑结构. 2018(21): 9-13 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  695
  • HTML全文浏览量:  24
  • PDF下载量:  311
  • 被引次数: 32
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-05-24
  • 刊出日期:  2016-10-24

目录

    /

    返回文章
    返回