扣件式高大模板支架的概率极限状态设计法研究

谢楠, 付小辉, 王立峰, 胡杭, 武桐

谢楠, 付小辉, 王立峰, 胡杭, 武桐. 扣件式高大模板支架的概率极限状态设计法研究[J]. 工程力学, 2016, 33(10): 68-75,104. DOI: 10.6052/j.issn.1000-4750.2015.12.0979
引用本文: 谢楠, 付小辉, 王立峰, 胡杭, 武桐. 扣件式高大模板支架的概率极限状态设计法研究[J]. 工程力学, 2016, 33(10): 68-75,104. DOI: 10.6052/j.issn.1000-4750.2015.12.0979
XIE Nan, FU Xiao-hui, WANG Li-feng, HU Hang, WU Tong. DESIGN METHOD OF LOAD AND RESISTANCE FACTOR FOR HIGH FALSEWORK WITH COUPLERS[J]. Engineering Mechanics, 2016, 33(10): 68-75,104. DOI: 10.6052/j.issn.1000-4750.2015.12.0979
Citation: XIE Nan, FU Xiao-hui, WANG Li-feng, HU Hang, WU Tong. DESIGN METHOD OF LOAD AND RESISTANCE FACTOR FOR HIGH FALSEWORK WITH COUPLERS[J]. Engineering Mechanics, 2016, 33(10): 68-75,104. DOI: 10.6052/j.issn.1000-4750.2015.12.0979

扣件式高大模板支架的概率极限状态设计法研究

基金项目: 国家自然科学基金项目(51578050);国家重点研发计划项目(2016YFC0802003)
详细信息
    作者简介:

    付小辉(1988-),男,重庆人,助理工程师,硕士,从事结构设计(E-mail:hsk_ym@163.com);王立峰(1989-),男,河北人,硕士生,从事结构可靠性分析研究(E-mail:14125818@bjtu.edu.cn);胡杭(1983-),男,江西人,工程师,硕士,从事施工技术研究(E-mail:1983huhang@sina.com);武桐(1992-),男,山西人,硕士生,从事结构可靠性分析研究(E-mail:15125891@bjtu.edu.cn)

    通讯作者:

    谢楠(1965-),女,湖南人,教授,博士,博导,从事结构设计和可靠度理论研究(E-mail:n_xie@sina.com).

  • 中图分类号: TU755.2;TU312

DESIGN METHOD OF LOAD AND RESISTANCE FACTOR FOR HIGH FALSEWORK WITH COUPLERS

More Information
    Corresponding author:

    XIE Nan: 10.6052/j.issn.1000-4750.2015.12.0979

  • 摘要: 近年来高大模板支架坍塌事故频发,尽管此类结构的验收标准低、荷载离散性大,但有关概率极限状态设计法的研究还十分不足。以搭设高度在7.6 m~14.0 m较为常见的扣件式高大模板支架为研究对象,给出了极限承载力的非线性简化计算方法,对比足尺整架试验数据,研究计算模式不确定性的统计特性;通过对现场采样数据、已有试验数据和容许误差等的分析,得出了满足规范要求的随机参数的统计特性;通过1000次Monte Carlo模拟得到了10种常用高大模板支架极限承载力的统计特性;基于枚举优化法,找出了与目标可靠指标一致性最佳的荷载效应分项系数和抗力分项系数,并将采用该文所建议方法得到的设计结果与按英国规范、我国现行规范得到的设计结果进行了比较。研究成果可为制定新规范提供理论依据。
    Abstract: Many collapses of high falseworks have occurred in recent years. The research on the design method of load and resistance factor for high falseworks is not efficient in spite of the lower standard of quality acceptance and the larger discreteness of load compared with those of permanent structures. Thusly, high falseworks with couplers (HFC) with height of 7.6m to 14.0m are taken into account. A simplified nonlinear calculating method of ultimate capacity is suggested and the statistic characteristics of model uncertainty are estimated by comparing the full-size test capacities to the predictions. In the range of tolerances given by the code, the statistics of uncertain parameters are obtained based on the samples collected in construction fields, test data and tolerances given in the code. The ultimate capacity statistics of 10 typical HFCs are estimated through 1000 Monte Carlo simulations. The optimal factors of load effect and resistance are found in terms of Enumeration Method. Design results given by the methods, and the British Code as well as the Chinese Code are compared. The results can provide a theoretical foundation for a new code.
  • [1] Zhang H, Chandrangsu T, Rasmussen K J R. Probabilistic study of the strength of steel scaffold systems[J]. Structural Safety, 2010, 32(6):393-401.
    [2] BS5975-2008, Code of practice for access and working scaffold and special scaffold structures[S]. London:British Standards Institution, 2008.
    [3] JGJ130-2011, 建筑施工扣件式钢管脚手架安全技术规范[S]. 北京:中国建筑工业出版社, 2011. JGJ130-2011. Technical code for safety of steel tubular scaffold with couplers in construction[S]. Beijing:China Architecture Industry Press, 2011. (in Chinese)
    [4] 谢楠, 张坚, 张丽, 等. 基于影响面的混凝土浇筑期施工荷载调查和统计分析[J]. 工程力学, 2015, 32(2):90-96. Xie Nan, Zhang Jian, Zhang Li, et al. Surveys on statistics analyses of construction loads during concrete placement based on influence surface[J]. Engineering Mechanics, 2015, 32(2):90-96. (in Chinese)
    [5] James R. Advanced analysis and probabilistic-based design of support scaffold systems[D]. Australia:Sydney University, 2014.
    [6] 胡长明. 扣件联接钢结构的试验及理论研究[D]. 西安:西安建筑科技大学, 2008. Hu Changming. Studies on experiment and theory of steel construction connected with fasteners[D]. Xi'an:Xi'an University of Architecture and Technology, 2008. (in Chinese)
    [7] Liu Hongbo, Zhao Qiuhong, Wang Xiaodun, et al. Experimental and analytical studies on the stability of structural steel tube and coupler scaffolds without X-bracing[J]. Engineering Structures, 2010, 32(4):1003-1015.
    [8] 刘红波, 陈志华, 王小盾, 等. 有剪刀撑扣件式钢管模板支架简化计算方法[J]. 土木建筑与环境工程, 2011, 33(4):65-72. Liu Hongbo, Chen Zhihua, Wang Xiaodun, et al. Simplified calculation method of steel tube and coupler scaffold with x-bracing[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(4):65-72. (in Chinese)
    [9] 鲁征. 扣件式脚手架及模板支架施工期安全性分析[D]. 浙江:浙江大学, 2005. Lu Zheng. Safety analysis for fasten-style tubular steel scaffold and bearing framework in the building construction[D]. Zhejiang:Zhejiang University, 2005. (in Chinese)
    [10] 陈志华, 陆征然, 王小盾. 钢管脚手架直角扣件刚度的数值模拟分析及试验研究[J]. 土木工程学报, 2010, 43(9):100-108. Chen Zhihua, Lu Zhengran, Wang Xiaodun. Numerical analysis and experimental study of the stiffness of right angle couplers in tubular steel scaffolds[J]. China Civil Engineering Journal, 2010, 43(9):100-108. (in Chinese)
    [11] 曹琛. 扣件式钢管模板支架节点半刚性受扭机制试验研究[D]. 西安:长安大学, 2011. Cao Chen. Experimental research on torsional mechanism about semi-rigid of coupler-style steel tubular formwork supports[D]. Xi'an:Chang'an University, 2011. (in Chinese)
    [12] Abdel-Jaber M S, Beale R G, Godley M H R. Rotational strength and stiffness of tubular scaffold connectors[J]. Proceedings of the Institution of Civil EngineersStructures and Buildings, 2009, 162(6):391-403.
    [13] 袁雪霞, 金伟良, 鲁征, 刘鑫, 陈天民. 扣件式钢管支模架稳定承载能力研究[J]. 土木工程学报, 2006, 39(5):43-50. Yuan Xuexia, Jin Weiliang, Lu Zheng, Liu Xin, Chen Tianmin. A study on the stability bearing capacity of fastener-style tubular formwork-supports[J]. China Civil Engineering Journal, 2006, 39(5):43-50. (in Chinese)
    [14] 刘建民, 李慧民. 构造因素对扣件式钢管模板支架稳定承载力的影响[J]. 四川建筑科学研究, 2007, 33(1):16-18. Liu Jianmin, Li Huimin. The influence of fastener-style steel pipe falsework's configurations on bearing capacity[J]. Building Science Research of Sichuan, 2007, 33(1):16-18. (in Chinese)
    [15] 谢楠, 王勇, 李靖. 高大模板支架极限承载力的计算方法[J]. 工程力学, 2010, 27(增刊1):254-259. Xie Nan, Wang Yong, Li Jing. A calculating method on ultimate capacity of high falsework[J]. Engineering Mechanics, 2010, 27(Suppl 1):254-259. (in Chinese)
    [16] Peng J L, Pan A D, Chan S L. Simplified models for analysis and design of modular falsework[J]. Journal of Constructional Steel Research, 1998, 48(3):189-209.
    [17] 付小辉. 高大模板支架极限承载力的统计特性以及基于可靠性的设计研究[D]. 北京:北京交通大学, 2015. Fu Xiaohui. Statistical characteristics of high formwork support's ultimate bearing capacity and a design method based on reliability[D]. Beijing:Beijing Jiaotong University, 2015. (in Chinese)
    [18] Ellingwood B R. Toward load and resistance factor design for fiber-reinforced polymer composite structures[J]. Journal of Structural Engineering, 2003, 129(4):449-458.
    [19] 赵凯. 考虑人为过失影响的高大模板支架优化研究[D]. 北京:北京交通大学, 2015. Zhao Kai. Optimization of high falsework considering the effect of human error[D]. Beijing:Beijing Jiaotong University, 2015. (in Chinese)
    [20] 谢楠. 高大模板支撑体系的安全控制[M]. 北京:中国建筑工业出版社, 2012:16-24. Xie Nan. Safety control for high formwork support systems[M]. Beijing:China Architecture Industry Press, 2012:16-24. (in Chinese).
    [21] Ellingwood B R. Design and construction error effects on structural reliability[J]. Structure Engineering, ASCE, 1987, 13(2):409-422.
计量
  • 文章访问数:  341
  • HTML全文浏览量:  25
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-07-07
  • 刊出日期:  2016-10-24

目录

    /

    返回文章
    返回