严重段塞流引起的海洋立管振动响应

王琳, 李玉星, 刘昶, 胡其会, 王娅婷, 王权

王琳, 李玉星, 刘昶, 胡其会, 王娅婷, 王权. 严重段塞流引起的海洋立管振动响应[J]. 工程力学, 2017, 34(6): 236-245. DOI: 10.6052/j.issn.1000-4750.2015.12.0957
引用本文: 王琳, 李玉星, 刘昶, 胡其会, 王娅婷, 王权. 严重段塞流引起的海洋立管振动响应[J]. 工程力学, 2017, 34(6): 236-245. DOI: 10.6052/j.issn.1000-4750.2015.12.0957
WANG Lin, LI Yu-xing, LIU Chang, HU Qi-hui, WANG Ya-ting, WANG Quan. DYNAMIC RESPONSE OF A MARINE RISER CAUSED BY SEVERE SLUGGING FLOW[J]. Engineering Mechanics, 2017, 34(6): 236-245. DOI: 10.6052/j.issn.1000-4750.2015.12.0957
Citation: WANG Lin, LI Yu-xing, LIU Chang, HU Qi-hui, WANG Ya-ting, WANG Quan. DYNAMIC RESPONSE OF A MARINE RISER CAUSED BY SEVERE SLUGGING FLOW[J]. Engineering Mechanics, 2017, 34(6): 236-245. DOI: 10.6052/j.issn.1000-4750.2015.12.0957

严重段塞流引起的海洋立管振动响应

基金项目: 国家自然科学基金项目(51404290);高等学校博士学科点专项科研基金项目(20110133110004)
详细信息
    作者简介:

    王琳(1986―),男,陕西人,博士生,主要从事流固耦合动力学研究(E-mail:lincw_wang@qq.com);李玉星(1970―),男,山东人,教授,博士,主要从事多相管流及油气田集输技术研究(E-mail:liyx@upc.edu.cn);刘昶(1988―),男,河北人,硕士生,主要从事多相管流及油气田集输技术研究(E-mail:lococo009@sina.com);王娅婷(1989―),女,四川人,助理工程师,硕士,主要从事燃气工程设计和研究(E-mail:wangyating915@gmail.com);王权(1992―),男,湖北人,硕士生,主要从事多相管流及油气田集输技术研究(E-mail:1589073010@qq.com)

    通讯作者:

    胡其会(1981―),男,河南人,讲师,博士,主要从事多相管流及油气田集输技术研究(E-mail:huqihui@upc.edu.cn)

  • 中图分类号: TE832

DYNAMIC RESPONSE OF A MARINE RISER CAUSED BY SEVERE SLUGGING FLOW

  • 摘要: 基于改进的严重段塞流瞬态数学模型和平面刚架理论,建立严重段塞流海洋立管耦合振动数学模型,对数学模型进行求解,研究了严重段塞流引起的海洋立管振动响应。数值模拟过程中,采用欧拉法计算严重段塞流流动参数,利用Galerkin法对立管结构动力学方程进行有限元离散,Newmark-β法求解离散方程。为了提高计算效率和精度,采用了变时间步长逐步积分方案。将数值模拟结果与实验数据进行对比,验证了数学模型和数值方法的准确性。对严重段塞流引起的立管系统位移响应、内力和支承力变化进行了深入分析。结果表明:立管系统的振动响应、内力变化规律与严重段塞流的周期性特征密切相关;弹性基础可以极大降低管道结构的振动幅度及内力,尤其是下倾管的弯曲内力;上升管的高频振动幅度较大,轴力和弯曲内力变化也较大。严重段塞流引起海洋立管振动响应的分析对海洋立管设计及其支承防护具有重要的指导意义。
    Abstract: A fluid-structure interaction model for a marine riser system on elastic foundation conveying severe slugging flow was developed based on the modified severe slugging transient model and theories of plane frame structure, and solved to simulate the dynamic response of a marine riser system caused by severe slugging flow using numerical methods. The Eulerian method was used to solve the equations of severe slugging flow. Galerkin's method was adopted to discretize the dynamic equations in space and Newmark-β method was employed for time-domain integration of the discretized equations. Variable time-steps were employed for higher computational efficiency and accuracy in the integration process. The comparisons of simulation results with the experimental data show that the mathematical model and numerical methods are reasonable. Detailed analysis of dynamic response, internal force, and reaction force of the hybrid riser reveals that the dynamic response of hybrid riser is closely related to the periodic characteristics of severe slugging flow, and the elastic foundation can suppress the vibration amplitude and the internal force, especially bending stress of the downward pipeline, significantly. The amplitude of high frequency vibration is large and the axial stress and bending stress oscillate acutely. These analyses are significant to guide the design of marine risers.
  • [1] Chen S S. Flow-Induced vibration of circular cylindrical structures [M]. New York: Hemisphere Publishing Corporation, 1985: 178-182.
    [2] Païdoussis M P, Issid N T. Dynamic stability of pipes conveying fluid [J]. Journal of Sound and Vibration, 1974, 33(3): 267-294.
    [3] Housner G W. Bending vibrations of a pipe line containing flowing fluid [J]. Journal of Applied Mechanics, 1952, 19(2): 205-208.
    [4] Niordson F I N. Vibrations of a cylindrical tube containing flowing fluid [J]. Transactions of the Royal Institute of Technology, 1953, 3(73): 1-27.
    [5] Gregory R W, Paidoussis M P. Unstable oscillation of tubular cantilevers conveying fluid. I. Theory [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, 293(1435): 512-527.
    [6] Paidoussis M P. Dynamics of tubular cantilevers conveying fluid [J]. Journal of Mechanical Engineering Science, 1970, 12(2): 85-103.
    [7] Paidoussis M P, Cusumano J P, Copeland G S. Low-dimensional chaos in a flexible tube conveying fluid [J]. Journal of Applied Mechanics, 1992, 59(1): 196-205.
    [8] Païdoussis M P, Li G X. Pipes conveying fluid: A model dynamical problem [J]. Journal of Fluids and Structures, 1993, 7(2): 137-204.
    [9] Kuiper G L, Metrikine A V, Battjes J A. A new time-domain drag description and its influence on the dynamic behaviour of a cantilever pipe conveying fluid [J]. Journal of Fluids and Structures, 2007, 23(3): 429-445.
    [10] Kuiper G L, Brugmans J, Metrikine A V. Destabilization of deep-water risers by a heaving platform [J]. Journal of Sound and Vibration, 2008, 310(3): 541-557.
    [11] 白兴兰, 段梦兰, 李强. 基于整体分析的钢悬链立管触地点动力响应分析[J]. 工程力学, 2014, 31(12): 249-256.Bai Xinglan, Duan Menglan, Li Qiang. Dynamic response of a steel catenary riser at the touchdown point based on integrated analysis [J]. Engineering Mechanics, 2014, 31(12): 249-256. (in Chinese)
    [12] Hara F. Two phase flow induced vibrations in a horizontal piping system [J]. JSME. 1975, 42(360): 2400-2411. (in Japanese)
    [13] Xu Xiaoping, Liu Mingyan, Ma Yue, An Min. Effects of fluidized solid particles on vibration behaviors of a graphite tube evaporator with an internal vapor–liquid flow [J]. Applied Thermal Engineering, 2016, 100(2016): 1229-1244.
    [14] Pettigrew M J, Taylor C E. Two-phase flow-induced vibration: An overview [J]. Journal of Pressure Vessel Technology, 1994, 116(3): 233-253.
    [15] Pettigrew M J, Taylor C E, Fisher N J, Yetisir M, Smith B A W. Flow-induced vibration: recent findings and open questions [J]. Nuclear Engineering and Design, 1998, 185(2/3): 249-276.
    [16] Tay B L, Thorpe R B. Hydrodynamic forces acting on pipe bends in gas-liquid slug flow [J]. Chemical Engineering Research and Design, 2014, 92(5): 812-825.
    [17] Baliño J L. Modeling and simulation of severe slugging in air-water systems including inertial effects [J]. Journal of Computational Science, 2014, 5(3): 482-495.
    [18] Baliño J L, Burr K P, Nemoto R H. Modeling and simulation of severe slugging in air–water pipeline–riser systems [J]. International Journal of Multiphase Flow, 2010, 36(8): 643-660.
    [19] Boe A. Severe slugging characteristics, Part 1:Flow regime for severe slugging; Part 2: Point model simulation study [C]. Trondheim: NTH, 1981: 1-35.
    [20] Jansen F E, Shoham O, Taitel Y. The elimination of severe slugging—experiments and modeling [J]. International Journal of Multiphase Flow, 1996, 22(6): 1055-1072.
    [21] Schmidt Z, Brill J, Beggs H. Experimental study of severe slugging in a two-phase-flow pipeline-riser pipe system [J]. SPE Journal, 1980, 20(5): 407-414.
    [22] Yocum B T. Offshore Riser slug flow avoidance: Mathematical models for design and optimization [C]. London: Society of Petroleum Engineers, 1973: 4312.
    [23] 马华伟. 组合立管系统中严重段塞流特性及其消除方法研究[D]. 青岛: 中国石油大学, 2008.Ma Huawei. Investigation on severe slugging phenomenon and elimination methods in multiphase riser pipe system [D]. Qingdao: China University of Petroleum, 2008. (in Chinese)
    [24] 王琳, 刘昶, 李玉星, 等. 基于CFD的海洋立管系统严重段塞流数值模拟[J]. 科学技术与工程, 2016, 16(16): 162-167.Wang Lin, Liu Chang, Li Yuxing, et al. Numerical simulation of severe slugging in offshore riser on CFD [J]. Science Technology and Engineering,, 2016, 16(16): 162-167. (in Chinese)
    [25] 王琳, 刘昶, 李玉星, 等. 空气-水立管系统的严重段塞流瞬态数学模型[J]. 油气储运, 2016, 35(11): 1235-1242.Wang Lin, Liu Chang, Li Yuxing, et al. Transient mathematical model for severe slugging in the air-water riser system [J]. Oil & Gas Storage and Transportation, 2016, 35(11): 1235-1242. (in Chinese)
    [26] Mukherjee H, Brill J P. Liquid holdup correlations for inclined two-phase flow [J]. Journal of Petroleum Technology, 1983, 35(5): 1003-1008.
    [27] Nicklin D J, Wilkes J O, Davidson J F. Two phase flow in vertical tubes [J]. Transactions of the Institution of Chemical Engineers, 1962, 40(1): 61-68.
    [28] Tengesdal J O, Kaya A S, Sarica C. Flow-pattern transition and hydrodynamic modeling of churn flow [J]. SPE Journal, 1999, 4(4): 342-348.
    [29] Clough R W, Penzien J. Dynamics of structures [M]. Berkeley: Computers & Structures, Inc., 2003: 365-376.
    [30] Binesh S M. Analysis of beam on elastic foundation using the radial point interpolation method [J]. Scientia Iranica, 2012, 19(3): 403-409.
    [31] Bathe K J. Finite element procedures [M]. New Jersey: Prentice-Hall, Inc., 1996: 768-830.
  • 期刊类型引用(7)

    1. 高岳,唐堂,朱红钧,胡洁,刘轩宇. 严重段塞流动与悬链线型柔性立管振动间的耦合作用研究. 水动力学研究与进展A辑. 2025(01): 89-99 . 百度学术
    2. 王春光,郑润,李明蕾,何文涛. 海洋立管涡激振动的基本理论、研究方法、影响因素及抑振方式的研究综述. 山东理工大学学报(自然科学版). 2024(02): 1-7 . 百度学术
    3. 郑冬妍,邓道明,诸葛夏侃,林聿明,宫敬. 气井积液临界气速预测新方法. 工程力学. 2024(12): 246-256 . 本站查看
    4. 马晓旭,刘帅,张政,田茂诚. U形管内气液两相流诱导振动特性的试验研究. 振动与冲击. 2023(14): 76-83 . 百度学术
    5. 殷布泽,胡其会,李玉星,王武昌,朱建鲁,王冬旭. 海洋立管涡激振动特性研究综述. 船舶力学. 2022(07): 1097-1109 . 百度学术
    6. 钟强,骆正山. 油气水三相段塞流引起的海洋立管耦合振动响应. 工程设计学报. 2019(01): 95-101 . 百度学术
    7. 赵状,吴玉国,胡漠. 国内油气储运工程技术热点与分析. 现代化工. 2018(03): 241-246 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  391
  • HTML全文浏览量:  29
  • PDF下载量:  122
  • 被引次数: 15
出版历程
  • 收稿日期:  2015-11-30
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-06-24

目录

    /

    返回文章
    返回