不同强度等级混凝土-190℃时受压强度性能试验研究

时旭东, 马驰, 张天申, 李俊林, 汪文强

时旭东, 马驰, 张天申, 李俊林, 汪文强. 不同强度等级混凝土-190℃时受压强度性能试验研究[J]. 工程力学, 2017, 34(3): 61-67. DOI: 10.6052/j.issn.1000-4750.2015.09.0750
引用本文: 时旭东, 马驰, 张天申, 李俊林, 汪文强. 不同强度等级混凝土-190℃时受压强度性能试验研究[J]. 工程力学, 2017, 34(3): 61-67. DOI: 10.6052/j.issn.1000-4750.2015.09.0750
SHI Xu-dong, MA Chi, ZHANG Tian-shen, LI Jun-lin, WANG Wen-qiang. EXPERIMENTAL STUDY ON COMPRESSIVE BEHAVIOR OF DIFFERENT STRENGTH GRADE CONCRETES EXPOSED TO -190℃[J]. Engineering Mechanics, 2017, 34(3): 61-67. DOI: 10.6052/j.issn.1000-4750.2015.09.0750
Citation: SHI Xu-dong, MA Chi, ZHANG Tian-shen, LI Jun-lin, WANG Wen-qiang. EXPERIMENTAL STUDY ON COMPRESSIVE BEHAVIOR OF DIFFERENT STRENGTH GRADE CONCRETES EXPOSED TO -190℃[J]. Engineering Mechanics, 2017, 34(3): 61-67. DOI: 10.6052/j.issn.1000-4750.2015.09.0750

不同强度等级混凝土-190℃时受压强度性能试验研究

基金项目: 国家自然科学基金项目(51478242)
详细信息
    作者简介:

    时旭东(1960-),男,安徽天长人,教授,博士,博导,从事混凝土结构研究(E-mail:shixd@mail.tsinghua.edu.cn);张天申(1956-),男,河北张家口人,高工,硕士,从事结构工程安全评估研究(E-mail:zhangtsh@tsinghua.edu.cn);李俊林(1992-),男,重庆垫江人,硕士生,从事超低温混凝土研究(E-mail:li-jl10@foxmail.com);汪文强(1993-),男,浙江温州人,硕士生,从事超低温混凝土研究(E-mail:wangwq0124@163.com).

    通讯作者:

    马驰(1991-),男,河南上蔡人,硕士生,从事超低温混凝土研究(E-mail:mac2009010@163.com).

  • 中图分类号: TU528

EXPERIMENTAL STUDY ON COMPRESSIVE BEHAVIOR OF DIFFERENT STRENGTH GRADE CONCRETES EXPOSED TO -190℃

  • 摘要: 通过5种配合比混凝土的试验,探究了不同强度等级混凝土-190℃超低温下的受压强度性能。结果表明,-190℃时混凝土受压的宏观试验现象较常温明显地不同。破坏时脆性均显著,但破坏形态却基本相同。所有试件混凝土-190℃时的受压强度均显著地提高,但混凝土的强度等级对其影响较大,并且还取决于混凝土的含水率。该次试验的C30和C40混凝土-190℃时受压强度较常温可分别增幅达40%和65%,提高其含水率后竟与C50和C60混凝土增幅相近、达90%以上。根据该次试验结果与已有研究结果给出的不同强度等级混凝土-190℃时受压强度的计算模型,可用于LNG储罐等混凝土结构的设计和安全评估。
    Abstract: The compressive behavior of concrete exposed to -190℃ with different strength grades including C30, C40, C50, and C60 was investigated through experiments with 5 different kinds of mix proportion. The results showed the experimental macro-phenomena of concrete exposed to -190℃ differed greatly from those at normal temperature. The specimens tended to present an obvious brittle failure, and the failure modes of all specimens were alike. The compressive strength of all specimens exposed to -190℃ increased obviously, and the strength grade of concrete had a great influence on its compressive strength. The extent of the increase in concrete compressive strength depended greatly on the water content in the specimen. The compressive strength of concrete exposed to -190℃ with C30 and C40 was increased by 40% and 65%, respectively, and they became similar to those for C50 and C60 and increased to above 190% after their water content in concrete was increased. Based on the experiment results and the existing research results, a predictive model for the compressive strength of different strength grade concrete exposed to -190℃ was proposed and is expected to be applicable for reliable design and evaluation of concrete structures such as LNG tanks.
  • [1] 黄帆. 我国液化天然气现状及发展前景分析[J]. 天然气技术, 2007, 1(1):68-71. Huang Fan. Present situation and development prospect of liquefied natural gas (LNG) analysis[J]. Natural Gas Technology, 2007, 1(1):68-71. (in Chinese)
    [2] 蒋正武, 张楠, 李雄英, 等. 国外超低温下混凝土性能的研究进展评述[J]. 材料导报A, 2011, 25(7):1-4. Jiang Zhengwu, Zhang Nan, Li Xiongying, et al. State-of- art review on properties of concrete at cryogenic temperature overseas[J]. Materials Report A, 2011, 25(7):1-4. (in Chinese)
    [3] 王传星, 谢剑, 李会杰. 低温环境下混凝土性能的试验研究[J]. 工程力学, 2011, 28(增刊II):182-186. Wang Chuanxing, Xie Jian, Li Huijie. Experimental research on the properties of concrete under low- temperature[J]. Engineering Mechanics, 2011, 28(Suppl II):182-186. (in Chinese)
    [4] 邓寿昌, 李克俭. 超负温混凝土的性质研究[J]. 低温建筑技术, 2002, 3(3):5-7. Deng Shouchang, Li Kejian. Properties of ultralow temperature concrete[J]. Low Temperature Building Technology, 2002, 3(3):5-7. (in Chinese)
    [5] 杨广, 吕成. 含水率对混凝土抗压强度影响的试验研究[J]. 江苏建筑职业技术学院学报, 2012, 12(1):13-16. Yang Guang, Lü Cheng. Experimental study on influence of water content on compressive strength of concrete[J]. Journal of Jiangsu Jianzhu Institute, 2012, 12(1):13-16. (in Chinese)
    [6] Lahlou Dahmani, Amar Khenane, Salah Kaci. Behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics, 2007, 47(9):517-525.
    [7] Neven Krstulovic-Opara. Liquefied natural gas storage:material behavior of concrete at cryogenic temperatures[J]. ACI Materials Journal, 2007, 104(3):297-306.
    [8] 王传星, 谢剑, 杨建江. 超低温环境下混凝土的性能[J]. 低温建筑技术, 2009, 9(9):8-10. Wang Chuanxing, Xie Jian, Yang Jianjiang. Properties of concrete under extremely low temperature[J]. Low Temperature Building Technology, 2009, 9(9):8-10. (in Chinese)
    [9] 时旭东, 居易, 郑建华, 等. 混凝土低温受压强度试验研究[J]. 建筑结构, 2014, 44(5):29-33. Shi Xudong, Ju Yi, Zheng Jianhua, et al. Experimental study on compressive strength of concrete exposed to cryogenic temperature[J]. Building Structure, 2014, 44(5):29-33. (in Chinese)
    [10] 李林. 含水率对混凝土性能影响的研究[D]. 北京:北京交通大学, 2009. Li Lin. Study on effect of water content on concrete performance[D]. Beijing:Beijing Jiaotong University, 2009. (in Chinese)
    [11] 陈建林, 韩明岚, 刘君昌. 考虑混凝土含水率在综合法测强中的应用研究[J]. 建筑科学, 2010, 26(1):17-19. Chen Jianlin, Han Minglan, Liu Junchang. Applying study on water content in ultrasonic-rebound method for concrete strength measurement[J]. Building Science, 2010, 26(1):17-19. (in Chinese)
    [12] 李守龙. 含水率对混凝土强度影响初步研究[D].西安:西北农林科技大学, 2014. Li Shoulong. Preliminary studies on the effect of water content and pore water pressure on the concrete strength[D]. Xi'an:Northwest Agriculture & Forestry University, 2014. (in Chinese)
    [13] 居易. 含水率对混凝土超低温性能影响试验研究[D]. 北京:清华大学, 2014. Ju Yi. Experimental study on behavior of concrete under cryogenic temperature with different moisture contents[D]. Beijing:Tsinghua University, 2014. (in Chinese)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  39
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-10
  • 修回日期:  2016-01-11
  • 刊出日期:  2017-03-24

目录

    /

    返回文章
    返回