一维C1有限元EEP超收敛位移计算简约格式的误差估计

AN ERROR ESTIMATE OF EEP SUPER-CONVERGENT DISPLACEMENT OF SIMPLIFIED FORM IN ONE-DIMENSIONAL C1 FEM

  • 摘要: 该文对一维C1有限元后处理超收敛计算的EEP(单元能量投影)法简约格式中的位移解给出误差估计的数学证明,即对足够光滑问题的m(>3)次单元的有限元解答,采用EEP法简约格式得到的单元内任一点位移超收敛解均可以达到hm+2的收敛阶,比常规有限元位移解的收敛阶至少高一阶。

     

    Abstract: For one-dimensional C1 problems of the Ritz Finite Element Method (FEM), an error estimate of the super-convergent displacement is presented for the simplified form of the Element Energy Projection (EEP) method used for super-convergence computation in post-processing stage of FEM. The mathematical analysis proves that for elements of degree m(>3) with sufficiently smooth problems and solutions, EEP displacement of the simplified form is capable of producing a convergence order of hm+2 at any point on an element, i.e. being at least one order higher than the displacement from conventional FEM.

     

/

返回文章
返回