变电站复合材料绝缘子的动力特性与地震易损性研究

李圣, 卢智成, 朱祝兵, 刘振林, 程永锋, 鲁先龙

李圣, 卢智成, 朱祝兵, 刘振林, 程永锋, 鲁先龙. 变电站复合材料绝缘子的动力特性与地震易损性研究[J]. 工程力学, 2016, 33(4): 91-97. DOI: 10.6052/j.issn.1000-4750.2014.08.0712
引用本文: 李圣, 卢智成, 朱祝兵, 刘振林, 程永锋, 鲁先龙. 变电站复合材料绝缘子的动力特性与地震易损性研究[J]. 工程力学, 2016, 33(4): 91-97. DOI: 10.6052/j.issn.1000-4750.2014.08.0712
Li Sheng, Lu Zhi-cheng, Zhu Zhu-bing, Liu Zhen-lin, Cheng Yong-feng, Lu Xian-long. DYNAMIC PROPERTIES AND SEISMIC FRAGILITY OF SUBSTATION COMPOSITE INSULATORS[J]. Engineering Mechanics, 2016, 33(4): 91-97. DOI: 10.6052/j.issn.1000-4750.2014.08.0712
Citation: Li Sheng, Lu Zhi-cheng, Zhu Zhu-bing, Liu Zhen-lin, Cheng Yong-feng, Lu Xian-long. DYNAMIC PROPERTIES AND SEISMIC FRAGILITY OF SUBSTATION COMPOSITE INSULATORS[J]. Engineering Mechanics, 2016, 33(4): 91-97. DOI: 10.6052/j.issn.1000-4750.2014.08.0712

变电站复合材料绝缘子的动力特性与地震易损性研究

基金项目: 国家电网公司科技项目(5299001352u7)
详细信息
    作者简介:

    卢智成(1978―),男,四川人,高工,博士,从事输变电工程抗震研究(E-mail:luzc@epri.sgcc.com.cn);朱祝兵(1982―),男,山东人,工程师,硕士,从事输变电工程抗震研究(E-mail:zhuzb@epri.sgcc.com.cn);刘振林(1987―),男,山东人,工程师,硕士,从事输变电工程抗震研究(E-mail:liuzhenlin@epri.sgcc.com.cn);程永锋(1969―),男,安徽人,教授级高工,博士,从事输变电工程地基与基础研究(E-mail:cyf@epri.sgcc.com.cn);鲁先龙(1972―),男,安徽人,高工,博士,从事输变电工程地基与基础研究(E-mail:luxianlong@epri.sgcc.com.cn).

    通讯作者:

    李圣(1988―),男,江西人,工程师,硕士,从事输变电工程抗震研究(E-mail:lisheng@epri.sgcc.com.cn).

  • 中图分类号: TM216.3;TU352.11

DYNAMIC PROPERTIES AND SEISMIC FRAGILITY OF SUBSTATION COMPOSITE INSULATORS

More Information
    Corresponding author:

    Li Sheng: 10.6052/j.issn.1000-4750.2014.08.0712

  • 摘要: 复合材料在变电站绝缘子上的应用,有望提高电气设备的抗震性能。测试了复合材料绝缘子的动力特性、弯曲刚度和承载能力;运用测试结果,建立了该复合材料绝缘子构成的电气设备的有限元模型;基于概率地震易损性分析理论,研究了电气设备的地震易损性。结果表明,复合材料绝缘子中套管与金属法兰的胶装连接段是抗弯承载力的薄弱部位,该段抗弯刚度明显小于套管刚度;该绝缘子组成的电气设备在0.4g等级地震下发生中度和重度失效的概率较小,但轻度失效的概率达38%,提高胶装段抗弯能力是提高抗震性能的关键;以失效概率为指标的易损性分析实现了电气设备抗震性能的概率化评价。
    Abstract: The adoption of composite materials in substation insulators is expected to improve the seismic performance of electrical equipment. The dynamic properties, bending stiffness, and strength of a composite insulator are tested, and the results are employed in FE modeling of electrical equipment which uses the composite insulator. The seismic fragility of the equipment is analyzed based on the theory of Probabilistic Seismic Fragility Analysis (PSFA). The results show that adhesive joints between composite tube and metal flange are a weak point in bending, and the stiffness of the adhesive joint is smaller than that of composite tube. When subjected to a 0.4 g level ground motion, seismic fragility of the equipment formed by composite insulators is small for moderate and severe levels of damage, but as large as 38% for minor level of damage. Increasing the flexural strength of adhesive joint can be effective in improving seismic performance. Taking the failure probability as index of seismic fragility, the paper presents a probabilistic evaluation of eletrical equipment's seismic performance.
  • [1] Papailiou K O, Schmuck F. Silicone composite insulators. [M]// Springer-Verlag Berlin Heidelberg, Heidelberg: 2013: 167-173.
    [2] Anshel J. Schiff, Leon Kempner, Jr. IEEE 693 Seismic qualification of composite for substation high-voltage equipment [C]// 13th World Conference on Earthquake Engineering, Vancouver, B C, Canada: August 1-6, 2004: 2306.
    [3] Hwasung Roh, Nicholas D Oliveto, Andrei M Reinhorn. Experimental test and modeling of hollow-core composite insulators [J]. Nonlinear Dyn, 2012, 69(4): 1651-1663.
    [4] Philippe Bonhote, Thomas Gmür, John Botsis, Konstantin O Papailiou. Stress and damage analysis of composite- aluminium joints used in electrical insulators subject to traction and bending [J]. Composite Structures, 2004, 64(3): 359-367.
    [5] Anurag Bansal. Finite element simulation and mechanical characterization of composite insulator [D]. Oregon: Oregon Institute of Science & Technology, 1996.
    [6] Alain Prenleloup, Thomas Gmür, John Botsis, Konstantin O Papailiou, Kurt Obrist. Stress and failure analysis of crimped metal-composite joints used in electrical insulators subjected to bending [J]. Composites, 2009, 40(1): 644-652.
    [7] Kumosa L, Kumosa M, Armentrout D. Resistance to brittle fracture of glass reinforced polymer composites used in composite (non-ceramic) insulators [J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2657-2666.
    [8] Kumosa L, Armentrout D, Kumosa M. An evaluation of the critical conditions for the initiation of stress corrosion cracking in unidirectional e-glass/polymer composites [J]. Composites Science and Technology, 2001, 61(4): 615-623.
    [9] IEEE Standard 693-2005, IEEE Recommended Practice for Seismic Design of Substations [S]. IEEE, 2005.
    [10] IEC 61462, Composite insulators-hollow insulators for use in outdoor and indoor electrical equipment- definitions, test methods, acceptance criteria and design recommendations [S]. International Electrotechnical Commission (IEC), 2007.
    [11] GB50260-2013, 电力设施抗震设计规范[S]: 北京: 计划出版社, 2012.GB50260-2013, Code for seismic design of electrical installations [S]. Beijing: China Planning Press, 2012. (in Chinese)
    [12] JEAG 5003-2010, 变电站电气设备抗震设计指南[S]. 东京: 日本电气协会发电与变电技术委员会, 2010.JEAG 5003-2010, Guidelines for seismic design of electrical equipment in substation [S]. Tokyo: Japan Eletric Association, 2010. (in Japanese)
    [13] Kevin M, Bozidar S, Probabilistic seismic demand model for California highway bridges [J]. Journal of Bridge Engineering, ASCE, 2001, 6(6): 468-481.
    [14] Nielson B G, DesRoches R, Seismic fragility methodology for highway bridges using a component level method [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(6): 823-839.
    [15] 曾志和, 樊剑, 余倩倩. 基于性能的桥梁结构概率地震需求分析[J]. 工程力学, 2012, 29(3): 156-161.Zeng Zhihe, Fan Jian, Yu Qianqian. Performance-based probalilistic seismic demand analysis of bridge structure [J]. Engineering Mechanics, 2012, 29(3): 156-161. (in Chinese)
    [16] 郑凯锋, 陈力波, 庄卫林, 马洪生, 张建经. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5): 165-171. Zheng Kaifeng, Chen Libo, Zhuang Weilin, Ma Hongsheng, Zhang Jianjing. Bridge vulnerability analysis based on probabilistic seismic demand models [J]. Engineering Mechanics, 2013, 30(5): 165-171. (in Chinese)
    [17] 吕大刚, 于晓辉, 潘峰, 王光远, 等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1): 7-15.Lü Dagang, Yu Xiaohui, Pan Feng, Wang Guangyuan, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method [J]. World Earthquake Engineering, 2010, 26(1): 7-15. (in Chinese)
    [18] 于晓辉, 吕大刚, 王光远. 关于概率地震需求模型的讨论[J]. 工程力学, 2013, 30(8): 172-180.Yu Xiaohui, Lü Dagang Wang Guangyuan. Discussion on probabilistic seismic demand models [J]. Engineering Mechanics, 2013, 30(8): 172-180. (in Chinese)
    [19] 李圣, 钟铁毅, 张常勇. 基于概率地震需求分析的铅芯橡胶支座抗震性能研究[J]. 振动与冲击, 2013, 32(7): 48-53.Li Sheng, Zhong Tieyi, Zhang Changyong. Aseismic performance of LRB based on probabilistic seismic demand analysis [J]. Journal of Vibration and Shock, 2013, 32(7): 48-53. (in Chinese)
    [20] Shome N. Probabilistic seismic demand analysis of nonlinear structures [D]. California: Stanford University, 1999.
    [21] Porter K A. An overview of PEER's performance-based earthquake engineering methodology [C]// Proceedings of the 9th International Conference on Applications of Statistics and Probability (ICASP9) in Civil Engineering, San Francisco, CA, 2003: 973-980.
    [22] PEER Strong motion Database [M/O]. http:// peer. berkeley.edu/nga, 2011.4.
计量
  • 文章访问数:  450
  • HTML全文浏览量:  36
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-18
  • 修回日期:  2015-05-04
  • 刊出日期:  2016-04-24

目录

    /

    返回文章
    返回