[1] |
de Boer R. Theory of porous media:Highlights in the historical development and current state[M]. Berlin, Heidelberg:Springer-Verlag, 2000:1-20.
|
[2] |
de Boer R. Theoretical poroelasticity-a new approach[J]. Chaos, Solitons & Fractals, 2005, 25(4):861-878.
|
[3] |
Apirathvorakij V, Karasudhi P. Quasi-static bending of a cylindrical elastic bar partially embedded in a saturated elastic half-space[J]. International Journal of Solids and Structures, 1980, 16(7):625-644.
|
[4] |
Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering mechanics, 1999, 125(9):1048-1055.
|
[5] |
Jin B, Zhou D, Zhong Z. Lateral dynamic compliance of pile embedded in poroelastic half space[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6):519-525.
|
[6] |
Zhou X L, Wang J H, Jiang L F, Xu B. Transient dynamic response of pile to vertical load in saturated soil[J]. Mechanics Research Communications, 2009, 36(5):618-624.
|
[7] |
李强, 郑辉, 王奎华. 饱和土中摩擦桩竖向振动解析解及应用[J]. 工程力学, 2011, 28(1):157-162. Li Qiang, Zheng Hui, Wang Kuihua. Analytical solution and its application of vertical vibration of a friction pile in saturated soil[J]. Engineering Mechanics, 2011, 28(1):157-162.(in Chinese)
|
[8] |
Wang J H, Zhou X L, Lu J F. Dynamic response of pile groups embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3):53-60.
|
[9] |
Maeso O, Aznarez J J, Garcia F. Dynamic impedances of piles and groups of piles in saturated soils[J]. Computers & Structures, 2005, 83(10/11):769-782.
|
[10] |
刘林超, 杨骁. 饱和土中桩-桩竖向动力相互作用及群桩竖向振动[J]. 工程力学, 2011, 28(1):124-130. Liu Linchao, Yang Xiao. Pile to pile vertical dynamic interaction and vertical vibration of pile groups in saturated soil[J]. Engineering Mechanics, 2011, 28(1):124-130.(in Chinese)
|
[11] |
Liang F Y, Song Z. BEM analysis of the interaction factor for vertically loaded dissimilar piles in saturated poroelastic soil[J]. Computers and Geotechnics, 2013, 62:223-231.
|
[12] |
Bellman R, Casti J. Differential quadrature and long-term integration[J]. Journal of Mathematical Analysis and Applications, 1971, 34(2):235-238.
|
[13] |
Bellmam R, Kashef B G, Casti J. Differential quadrature:A technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1):40-52.
|
[14] |
Bert C W, Malik M. Differential quadrature method in computational mechanics:A review[J]. Applied Mechanics Reviews, 1996, 49(1):1-28.
|
[15] |
聂国隽, 仲政. 用微分求积法求解梁的弹塑性问题[J]. 工程力学, 2005, 22(1):59-62, 27. Nie Guojun, Zhong Zheng. Elasto-plastic analysis of beams by differential quadrature method[J]. Engineering Mechanics, 2005, 22(1):59-62, 27.(in Chinese)
|
[16] |
张琼, 杜永峰, 朱前坤. 基于微分求积法的Euler-Bernoulli梁的大变形力学行为研究[J]. 工程力学, 2014, 31(增刊1):1-4, 10. Zhang Qiong, Du Yongfeng, Zhu Qiankun. Study on large deformation mechanical behavior of Euler-Bernoulli beam using DQM[J]. Engineering Mechanics, 2014, 31(Suppl 1):1-4, 10.(in Chinese)
|
[17] |
Hu Y J, Zhu Y Y, Cheng C J. DQEM for large deformation analysis of structures with discontinuity conditions and initial displacements[J]. Engineering Structures, 2008, 30(5):1473-1487.
|
[18] |
胡育佳, 朱媛媛, 程昌钧. 求解几何非线性桩-土耦合系统的微分求积单元法[J]. 固体力学学报, 2008, 29(2):141-148. Hu Yujia, Zhu Yuanyan Cheng Changjun. DQEM for solving pile-soil coupling systems with geometrical non-linearity[J]. Chinese Journal of Solid Mechanics, 2008, 29(2):141-148.(in Chinese)
|
[19] |
Wang X W, Wang Y L. Free vibration analysis of multiple-stepped beams by the differential quadrature element method[J]. Applied Mathematics & Computation, 2013, 219(11):5802-5810.
|
[20] |
de Boer R, Ehlers W, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media[J]. Archive of Applied Mechanics, 1993, 63(1):59-72.
|