桩基-流体饱和土体耦合系统的动态响应分析

朱媛媛, 胡育佳, 仲政, 程昌钧

朱媛媛, 胡育佳, 仲政, 程昌钧. 桩基-流体饱和土体耦合系统的动态响应分析[J]. 工程力学, 2016, 33(3): 169-178. DOI: 10.6052/j.issn.1000-4750.2014.08.0694
引用本文: 朱媛媛, 胡育佳, 仲政, 程昌钧. 桩基-流体饱和土体耦合系统的动态响应分析[J]. 工程力学, 2016, 33(3): 169-178. DOI: 10.6052/j.issn.1000-4750.2014.08.0694
ZHU Yuan-yuan, HU Yu-jia, ZHONG Zheng, CHENG Chang-jun. DYNAMIC RESPONSE OF A PILE-FLUID-SATURATED-SOIL COUPLED SYSTEM[J]. Engineering Mechanics, 2016, 33(3): 169-178. DOI: 10.6052/j.issn.1000-4750.2014.08.0694
Citation: ZHU Yuan-yuan, HU Yu-jia, ZHONG Zheng, CHENG Chang-jun. DYNAMIC RESPONSE OF A PILE-FLUID-SATURATED-SOIL COUPLED SYSTEM[J]. Engineering Mechanics, 2016, 33(3): 169-178. DOI: 10.6052/j.issn.1000-4750.2014.08.0694

桩基-流体饱和土体耦合系统的动态响应分析

基金项目: 国家自然科学基金重点项目(11232009);上海市自然科学基金项目(15ZR1431600)
详细信息
    作者简介:

    胡育佳(1979-),男,江西人,副教授,博士,主要从事结构多场耦合分析研究(E-mail:huyujia@126.com);仲政(1964-),男,福建人,教授,博士,博导,主要从事工程力学研究(E-mail:zhongk@tongji.edu.cn);程昌钧(1937-),女,重庆人,教授,学士,博导,主要从事固体力学研究(E-mail:chjcheng@mail.shu.edu.cn).

    通讯作者:

    朱媛媛(1971-),女,上海人,副教授,博士,主要从事结构的非线性理论、方法和应用研究(E-mail:yuanyuan_zhu@hotmail.com).

  • 中图分类号: TU435

DYNAMIC RESPONSE OF A PILE-FLUID-SATURATED-SOIL COUPLED SYSTEM

  • 摘要: 该文研究了空间轴对称桩基-流体饱和土体耦合系统的动态响应。首先,基于弹性力学和多孔介质理论给出了耦合系统的控制微分方程、边界条件和桩-土之间界面上的连接条件;其次,发展了微分求积单元法;在此基础上采用所发展的方法和2阶向后差分格式在空间和时间域内离散了控制微分方程;最后,利用Newton-Raphson迭代方法在初始条件下求得了系统的数值解,分析了耦合系统的动态响应,考察了参数的影响,也验证了数值方法的有效性。
    Abstract: The dynamic response of a space-axisymmetrical pile-fluid-saturated soil coupled system is studied. Firstly, based on the theory of elasticity and the Porous Media theory, the governing differential equations for the coupled system are presented. Then, the differential quadrature element method is developed. After that, the developed differential quadrature element method and the second-order backward difference scheme are applied to discretize the governing differential equations of the coupled system on spatial and temporal domains, respectively. Finally, the Newton-Raphson iteration method is used to derive the numerical solutions of the system with initial conditions, the dynamic response of the system and the effect of parameters are studied, and the validity of the analysis method is verified.
  • [1] de Boer R. Theory of porous media:Highlights in the historical development and current state[M]. Berlin, Heidelberg:Springer-Verlag, 2000:1-20.
    [2] de Boer R. Theoretical poroelasticity-a new approach[J]. Chaos, Solitons & Fractals, 2005, 25(4):861-878.
    [3] Apirathvorakij V, Karasudhi P. Quasi-static bending of a cylindrical elastic bar partially embedded in a saturated elastic half-space[J]. International Journal of Solids and Structures, 1980, 16(7):625-644.
    [4] Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering mechanics, 1999, 125(9):1048-1055.
    [5] Jin B, Zhou D, Zhong Z. Lateral dynamic compliance of pile embedded in poroelastic half space[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6):519-525.
    [6] Zhou X L, Wang J H, Jiang L F, Xu B. Transient dynamic response of pile to vertical load in saturated soil[J]. Mechanics Research Communications, 2009, 36(5):618-624.
    [7] 李强, 郑辉, 王奎华. 饱和土中摩擦桩竖向振动解析解及应用[J]. 工程力学, 2011, 28(1):157-162. Li Qiang, Zheng Hui, Wang Kuihua. Analytical solution and its application of vertical vibration of a friction pile in saturated soil[J]. Engineering Mechanics, 2011, 28(1):157-162.(in Chinese)
    [8] Wang J H, Zhou X L, Lu J F. Dynamic response of pile groups embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3):53-60.
    [9] Maeso O, Aznarez J J, Garcia F. Dynamic impedances of piles and groups of piles in saturated soils[J]. Computers & Structures, 2005, 83(10/11):769-782.
    [10] 刘林超, 杨骁. 饱和土中桩-桩竖向动力相互作用及群桩竖向振动[J]. 工程力学, 2011, 28(1):124-130. Liu Linchao, Yang Xiao. Pile to pile vertical dynamic interaction and vertical vibration of pile groups in saturated soil[J]. Engineering Mechanics, 2011, 28(1):124-130.(in Chinese)
    [11] Liang F Y, Song Z. BEM analysis of the interaction factor for vertically loaded dissimilar piles in saturated poroelastic soil[J]. Computers and Geotechnics, 2013, 62:223-231.
    [12] Bellman R, Casti J. Differential quadrature and long-term integration[J]. Journal of Mathematical Analysis and Applications, 1971, 34(2):235-238.
    [13] Bellmam R, Kashef B G, Casti J. Differential quadrature:A technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1):40-52.
    [14] Bert C W, Malik M. Differential quadrature method in computational mechanics:A review[J]. Applied Mechanics Reviews, 1996, 49(1):1-28.
    [15] 聂国隽, 仲政. 用微分求积法求解梁的弹塑性问题[J]. 工程力学, 2005, 22(1):59-62, 27. Nie Guojun, Zhong Zheng. Elasto-plastic analysis of beams by differential quadrature method[J]. Engineering Mechanics, 2005, 22(1):59-62, 27.(in Chinese)
    [16] 张琼, 杜永峰, 朱前坤. 基于微分求积法的Euler-Bernoulli梁的大变形力学行为研究[J]. 工程力学, 2014, 31(增刊1):1-4, 10. Zhang Qiong, Du Yongfeng, Zhu Qiankun. Study on large deformation mechanical behavior of Euler-Bernoulli beam using DQM[J]. Engineering Mechanics, 2014, 31(Suppl 1):1-4, 10.(in Chinese)
    [17] Hu Y J, Zhu Y Y, Cheng C J. DQEM for large deformation analysis of structures with discontinuity conditions and initial displacements[J]. Engineering Structures, 2008, 30(5):1473-1487.
    [18] 胡育佳, 朱媛媛, 程昌钧. 求解几何非线性桩-土耦合系统的微分求积单元法[J]. 固体力学学报, 2008, 29(2):141-148. Hu Yujia, Zhu Yuanyan Cheng Changjun. DQEM for solving pile-soil coupling systems with geometrical non-linearity[J]. Chinese Journal of Solid Mechanics, 2008, 29(2):141-148.(in Chinese)
    [19] Wang X W, Wang Y L. Free vibration analysis of multiple-stepped beams by the differential quadrature element method[J]. Applied Mathematics & Computation, 2013, 219(11):5802-5810.
    [20] de Boer R, Ehlers W, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media[J]. Archive of Applied Mechanics, 1993, 63(1):59-72.
  • 期刊类型引用(3)

    1. 潘建中. 超高薄型轻钢组合墙体系在大空间建筑中的应用研究. 建筑施工. 2024(02): 241-243+247 . 百度学术
    2. 吴函恒,隋璐,聂少锋,周天华,袁涛涛. 填充石膏基轻质材料的冷弯型钢复合墙体受剪承载力分析. 工程力学. 2022(04): 177-186 . 本站查看
    3. 李元齐,吴雨杭. 冷弯型钢轻钢集成体系建筑工业化建造技术发展现状与展望. 四川建筑科学研究. 2021(03): 1-19 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  365
  • HTML全文浏览量:  30
  • PDF下载量:  188
  • 被引次数: 3
出版历程
  • 收稿日期:  2014-08-10
  • 修回日期:  2015-03-15
  • 刊出日期:  2016-03-24

目录

    /

    返回文章
    返回