基于混合模型方法的大型输水隧道水锤冲击响应数值分析

楼云锋, 曹源, 杨颜志, 金先龙

楼云锋, 曹源, 杨颜志, 金先龙. 基于混合模型方法的大型输水隧道水锤冲击响应数值分析[J]. 工程力学, 2016, 33(2): 224-231. DOI: 10.6052/j.issn.1000-4750.2014.07.0577
引用本文: 楼云锋, 曹源, 杨颜志, 金先龙. 基于混合模型方法的大型输水隧道水锤冲击响应数值分析[J]. 工程力学, 2016, 33(2): 224-231. DOI: 10.6052/j.issn.1000-4750.2014.07.0577
LOU Yun-feng, CAO Yuan, YANG Yan-zhi, JIN Xian-long. APPLICATION OF HYBRID MODELING METHOD TO SIMULATE WATER HAMMER IMPACTS IN ULTRA-LARGE WATER CONVEYANCE TUNNEL[J]. Engineering Mechanics, 2016, 33(2): 224-231. DOI: 10.6052/j.issn.1000-4750.2014.07.0577
Citation: LOU Yun-feng, CAO Yuan, YANG Yan-zhi, JIN Xian-long. APPLICATION OF HYBRID MODELING METHOD TO SIMULATE WATER HAMMER IMPACTS IN ULTRA-LARGE WATER CONVEYANCE TUNNEL[J]. Engineering Mechanics, 2016, 33(2): 224-231. DOI: 10.6052/j.issn.1000-4750.2014.07.0577

基于混合模型方法的大型输水隧道水锤冲击响应数值分析

基金项目: 国家自然科学基金项目(11272214,51475287);国家863 重大项目课题(2012AA01A307)
详细信息
    作者简介:

    楼云锋(1987-),男,浙江东阳人,博士生,主要从事大型结构流固耦合高性能数值计算研究(E-mail:louyunfeng9021@sjtu.edu.cn);曹源(1976-),男,辽宁盖州人,高工,博士,主要从事流构耦合、高性能计算与仿真研究(E-mail:caoyuan@sjtu.edu.cn);杨颜志(1983-),男,湖南永州人,高工,博士,主要从事大型复杂结构振动、冲击数值分析研究(E-mail:yyz83510@sjtu.edu.cn).

    通讯作者:

    金先龙(1961-),男,湖北孝感人,教授,博士,博导,主要从事高性能计算技术及应用研究(E-mail:jxlong@sjtu.edu.cn).

  • 中图分类号: U459.6

APPLICATION OF HYBRID MODELING METHOD TO SIMULATE WATER HAMMER IMPACTS IN ULTRA-LARGE WATER CONVEYANCE TUNNEL

More Information
    Corresponding author:

    JIN Xian-long: 10.6052/j.issn.1000-4750.2014.07.0577

  • 摘要: 针对大型输水隧道水锤分析响应分析中由于超大计算规模和非线性强流-固耦合计算造成的数值计算困难,该文提出将混合模型方法应用到大型衬砌输水隧道水锤冲击响应的数值模拟中,通过该方法不仅可以得到输水隧道全程水锤压力,也可以得到关键区域衬砌环管片结构响应。模型中流场部分通过FLUENT计算得到流场节点压力和速度,然后通过初始条件或边界信息施加到结构部分进行LS-DYNA计算,水锤计算时流-固耦合通过基于ALE(Arbitrary Lagrangian-Eulerian)描述的罚函数实现。该文对上海某大直径双线输水隧道在水锤作用下的结构响应进行了分析,结果呈现了水锤压力在长距离输水隧道内的传播以及对衬砌结构的影响。
    Abstract: Because of the ultra-large scale calculation and strong nonlinear calculation of fluid structure interactions (FSIs), the numerical simulation and analysis of water hammer impacts in an ultra-large water conveyance tunnel are difficult. The hybrid modeling method is used to simulate water hammer impacts in an ultra-large water conveyance tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the finite element model, the pressure and velocity of fluid field is solved with FLUENT and then applied to the structure as the initial conditions or boundary information. The structural field is solved with the finite-element program LS-DYNA. The interaction between two physical fields is realized using ALE (Arbitrary Lagrangian-Eulerian) description. The structural response of a large-diameter double-line water conveyance tunnel in Shanghai under the impact of water hammer is analyzed. The results presented the propagation of water hammer pressure in the long-distance water conveyance tunnel and the effects on tunnel linings.
  • [1] Cesano D, Olofsson B, Bagtzoglou A C. Parameters regulating groundwater inflows into hard rock tunnels-a statistical study of the Bolmen tunnel in southern Sweden[J]. Tunneling and Underground Space Technology, 2000, 15(2):153-165.
    [2] 张立翔, 黄文虎, Tijsseling A S. 水锤诱发弱约束管道流固耦合振动频谱分析[J]. 工程力学, 2000, 17(1):1-12. Zhang Lixiang, Huang Wenhu, Tijsseling A S. Frequency spectrum analysis of liquid-filled pipes under water hammer-induced fsi[J]. Engineering Mechanics, 2000, 17(1):1-12.(in Chinese)
    [3] Kochupillai J, Ganesan N, Padmanabhan C. A new finite element formulation based on the velocity of flow for water hammer problems[J]. International Journal of Pressure Vessels and Piping, 2005, 82(1):1-14.
    [4] 封坤, 何川, 邹育麟. 大断面越江盾构隧道管片拼装方式对结构内力的影响效应研究[J]. 工程力学, 2012, 29(6):114-124. Feng Kun, He Chuan, Zou Yulin. Study on the effect of assembling method on the inner force of segmental lining for cross-river shield tunnel with large cross-section[J]. Engineering Mechanics, 2012, 29(6):114-124.(in Chinese)
    [5] 鞠杨, 徐广泉, 毛灵涛, 段庆全, 赵同顺. 盾构隧道衬砌结构应力与变形的三维数值模拟与模型试验研究[J]. 工程力学, 2005, 22(3):157-165. Ju Yang, Xu Guangquan, Mao Lingtao, Duan Qingquan, Zhao Tongshun. 3D numerical simulation of stress and strain properties of concrete shield tunnel lining and modeling experiments[J]. Engineering Mechanics, 2005, 22(3):157-165. (in Chinese)
    [6] 李爱群, 王浩. 子模型法在超大跨悬索桥钢箱梁应力分析中的应用[J]. 工程力学, 2007, 24(2):80-84. Li Aiqun, Wang Hao. Stress analysis on steel box girders of super-long-span suspension bridges with sub-model method[J]. Engineering Mechanics, 2007, 24(2):80-84. (in Chinese)
    [7] Colella F, Rein G, Carvel R, Reszka P, Torero J L. Analysis of the ventilation systems in the Dartford tunnels using a multi-scale modelling approach[J]. Tunnelling and Underground Space Technology, 2010, 25:423-432.
    [8] Nilakantan G, Keefe M, Bogetti T A. Multiscale modeling of the impact of textile fabrics based on hybrid element analysis[J]. International Journal of Impact Engineering, 2010, 37:1056-1071.
    [9] 姚署霖, 闻敏杰. 黏弹性土中衬砌隧道振动响应的解析解[J]. 工程力学, 2014, 31(3):109-115. Yao Shulin, Wen Minjie. Analytical solutions of dynamic responses of a lined tunnel in viscoelastic soil[J]. Engineering Mechanics, 2014, 31(3):109-115. (in Chinese)
    [10] Teixeira P R F, Awruch A M. Numerical simulation of fluid-structure interaction using the finite element method[J]. Computers & Fluids, 2005, 34:249-273.
    [11] Ding J H, Jin X L. Numerical simulation for large-scale seismic response analysis of immersed tunnel[J]. Engineering Structures, 2006, 28(10):1367-1377.
    [12] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids Structures, 1982, 18(7):551-516.
    [13] Liu Jinbo, Du Xiuli, Wang Zhenyu, Wu J. 3D viscous-spring artificial boundary in time domain[J]. Earthquake Engineering and Engineering Vibration, 2006, 5(1):93-102.
    [14] 何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8):960-969. He Jiantao, Ma Huaifa, Zhang Boyan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8):960-969. (in Chinese)
    [15] 张建刚, 何川. 盾构隧道衬砌整环力学机理模型[J]. 工程力学, 2013, 30(7):136-142. Zhang Jiangang, He Chuan. Model of mechanical behavior with whole segmental lining of shield tunnel[J]. Engineering Mechanics, 2013, 30(7):136-142. (in Chinese)
    [16] 楼云锋, 杨颜志, 金先龙. 输水隧道地震响应的多物质ALE数值分析[J]. 岩土力学, 2014, 35(7):2095-2102. Lou Yunfeng, Yang Yanzhi, Jin Xianlong. Numerical simulation of ALE multi-material method for water-conveying tunnel seismic response[J]. Rock and Soil Mechanics, 2014, 35(7):2095-2102. (in Chinese)
  • 期刊类型引用(3)

    1. 楼云锋, 刘涛, 王欢欢, 付宝强, 金先龙. 波浪冲击下充气式浮桥流固耦合数值模拟分析. 工程力学. 2018(09): 232-239+256 . 本站查看
    2. 孙强, 伍悦滨, 徐莹, JANG Tae Uk. 一种高效的准二维管道瞬变流计算方法. 工程力学. 2017(09): 34-42 . 本站查看
    3. 张文学, 黄荐, 陈盈, 杜修力. 渡槽结构考虑流固耦合的横向地震响应简化计算公式. 工程力学. 2017(08): 69-75+95 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  434
  • HTML全文浏览量:  39
  • PDF下载量:  150
  • 被引次数: 3
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2014-12-04
  • 刊出日期:  2016-02-24

目录

    /

    返回文章
    返回