FORM FINDING ANALYSIS OF CABLE-STRUT TENSILE DOME BASED ON TENSEGRITY TORUS
-
摘要: 运用平衡矩阵奇异值分解技术,通过变换经典半八面体张拉整体单元的几何构型,对半规则张拉整体单元进行了自平衡构型的找形分析,给出了几何变换后的设计公式,并通过单元自应力模态和机构位移模态验证了单元的几何稳定性。对此单元进行环向拼装,得到了环形张拉整体结构并给出结构整体可行预应力。提出了环形张拉整体中部引入葵花形索穹顶的构造方法,构建了全张力自平衡的新型索杆穹顶结构,并对其进行了静力分析,表明该结构具有较好的刚度。最后通过实物模型进一步验证了该结构体系的可行性。该研究对张拉整体在实际工程中的应用具有一定促进作用。Abstract: The form finding analysis for self-equilibrium configuration of semi-regular tensegrity units was implemented by changing the geometry of classic half-octahedron tensegrity units. Singular value decomposition of equilibrium matrix was used in the form finding analysis. The design formulas for geometric transformation of the units were summarized and the geometric stability was verified combined with the self-stress modes and inextensible displacement modes of the units. The tensegrity torus was developed by assembling the units annularly and the overall feasible self-stress of the torus was presented as well. A novel self-balancing cable-strut tensile dome was generated by introducing a Levy type cable dome in the center. A static analysis of the structure was performed indicating that the structure had high stiffness. Finally a physical model was made to verify the feasibility of the structural system. This work will encourage and support the practical applications of tensegrity.
-
Keywords:
- semi-regular tensegrity /
- tensegrity torus /
- form finding analysis /
- self-stress modes /
- cable dome
-
-
[1] Motro R, Nooshin H. Forms and forces in tensegrity systems [C]. Proceedings of Third International Conference on Space Structures, Amsterdam, Elsevier, 1984: 180―185. [2] Motro R. Tensegrity: Structural systems for the future [M]. London: Kogan Page Scienee, 2003: 7―32. [3] Quirant J, Kazi-Aoual M N, Motro R. Designing tensegrity systems: the case of a double layer grid [J]. Engineering Structures, 2003, 25(9): 1121―1130. [4] Sultan C. Modeling, design, and control of tensegrity structures with applications [D]. Indiana: Purdue University, 1999. [5] Murakami H, Nishimura Y. Initial shape finding and modal analyses of cyclic right-cylindrical tensegrity modules [J]. Computers and Structures, 2001, 79(9): 891―917. [6] Motro R, Belkacem S, Vassart N. Form finding numerical methods for tensegrity systems [C]. Proceedings of IASS International Symposium on Spatial, Lattice and Tension Structures, Atlanta, ASCE, 1994: 704―713. [7] Wang B B, Li Y Y. From tensegrity grids to cable-strut grids [J]. International Journal of Space Structures, 2001, 16(4): 279―314. [8] Yuan X F, Peng Z L, Dong S L, Zhao B J. A new tensegrity module-“torus” [J]. Advances in Structural Engineering, 2008, 11(3): 243―251. [9] Kenner H. Geodesic math and how to use it [D]. California: University of California, 1976. [10] Xu X, Luo Y. Force finding of tensegrity system using simulated annealing algorithm [J]. Journal of Structural Engineering, 2010, 136(8): 1027―1031. [11] Pellegrino S. Mechanics of Kinematically Indeterminate Structures [D]. Cambridge: University of Cambridge, 1986. [12] Calladine C R, Pellegrino S. First-order infinitesimal mechanisms [J]. International Journal of Solids and Structures, 1991, 27(4): 505―515. [13] Geiger D H, Stenfaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics [C]. Proceedings of IASS International Symposium, Osaka, ASCE, 1986: 265―272. [14] 袁行飞, 董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2): 22―26. Yuan Xingfei, Dong Shilin. New forms and initial prestress calculation of cable domes [J]. Engineering Mechanics, 2005, 22(2): 22―26. (in Chinese) [15] 董石麟, 罗尧治, 赵阳. 新型空间结构分析、设计与施工[M]. 北京: 人民交通出版社, 2006: 612―615.
Dong Shilin, Luo Yaozhi, Zhao Yang. Analysis, design and construction of new space structures [M]. Beijing: China Communications Press, 2006: 612―615. (in Chinese) -
期刊类型引用(17)
1. 冯晓东,冯达,赵文雁,陈耀,郑亦汶. 基于节点松弛法的张拉整体结构力学性能分析. 工程力学. 2025(03): 100-112 . 本站查看
2. 葛艺芃,姜超,张亮,刘占芳,王子康,张凯. 考虑预应力松弛的张拉整体机械臂可靠性分析. 工程力学. 2024(10): 237-246 . 本站查看
3. 冯越,袁行飞,艾科热木江·塞米,董永灿. 新型马鞍形索杆张力结构研究. 华中科技大学学报(自然科学版). 2022(02): 7-12 . 百度学术
4. 冯晓东,胡晋荣,撒剑波,杨伟家,罗尧治. 环形张拉整体式穹顶结构拉索失效研究. 建筑钢结构进展. 2022(05): 101-112 . 百度学术
5. 宋陈,储紫微,汪晨灿. 基于机器视觉的夜间位移检测算法研究. 佳木斯大学学报(自然科学版). 2022(04): 43-46 . 百度学术
6. 冯晓东,杨伟家,李锋,赵颖超,冷新中. 基于二次奇异值分解法的张拉整体结构找形分析. 西安建筑科技大学学报(自然科学版). 2021(04): 502-509 . 百度学术
7. 薛素铎,王成林,孙国军,武加泳. Levy型劲性支撑穹顶静力性能试验研究. 建筑结构学报. 2020(03): 150-155 . 百度学术
8. 张爱林,文闻,张艳霞,武超群,王庆博. 空间三撑杆双环索索穹顶考虑自重的预应力计算方法及参数分析. 工程力学. 2020(05): 36-45 . 本站查看
9. 冯远,王立维,张彦,邱添,杨文,向新岸,刘翔,廖姝莹. 成都凤凰山专业足球场结构设计. 建筑结构. 2020(19): 15-21+14 . 百度学术
10. 尚仁杰,戈建,李明澔. 一种环形张拉整体结构找形与应用. 应用力学学报. 2020(06): 2598-2604+2707-2708 . 百度学术
11. 董石麟,陈伟刚,涂源,郑晓清. 蜂窝三撑杆型索穹顶结构构形和预应力态分析研究. 工程力学. 2019(09): 128-135 . 本站查看
12. 谢胜达,袁行飞,马烁. 基于小生境遗传算法的新型环形张拉整体结构拓扑优化. 空间结构. 2019(04): 35-42 . 百度学术
13. 张爱林,孙超,姜子钦. 联方型双撑杆索穹顶考虑自重的预应力计算方法. 工程力学. 2017(03): 211-218 . 本站查看
14. 张爱林,白羽,刘学春,孙超. 新型脊杆环撑索穹顶结构静力性能分析. 空间结构. 2017(03): 11-20 . 百度学术
15. 李团结,车明奎. 张拉整体结构外力与形变间关系分析及实验验证. 西安电子科技大学学报. 2017(01): 24-28 . 百度学术
16. 朱明亮,陆金钰,郭正兴. 新型环箍穹顶全张力结构局部断索抗连续倒塌性能分析. 东南大学学报(自然科学版). 2016(05): 1057-1062 . 百度学术
17. 陆金钰,董霄,李娜,武啸龙. 环箍-穹顶索杆结构局部断索抗倒塌能力分析. 工程力学. 2016(S1): 173-178 . 本站查看
其他类型引用(10)
计量
- 文章访问数: 405
- HTML全文浏览量: 35
- PDF下载量: 169
- 被引次数: 27