风力机翼型动态失速气动特性仿真

DYNAMIC STALL SIMULATION OF WIND TURBINE AIRFOILS

  • 摘要: 基于Beddoes-Leishman(B-L)半经验动态失速模型,从附着流、分离流和动态涡三个方面阐述了风力机翼型在动态失速情况下非定常气动力系数的计算方法。在此基础上根据风力机翼型工作时的实际特点对原B-L模型中分离流和动态涡气动力系数的计算进行了改进,并将模型扩充到适用于全范围攻角的动态失速计算。利用所编制的程序仿真了风力机翼型S809和NACA4415动态失速下的升力、阻力和力矩系数。计算结果与实验数据吻合良好。改进模型与原B-L模型计算结果的对比表明,改进后的模型提高了对非定常气动力系数计算的精确性和适用区间,能更好地预测动态失速气动力的变化。

     

    Abstract: Based on the Beddoes-Leishman (B-L) semi-empirical dynamic stall model, the dynamic stall characteristics of wind turbine airfoils were studied through the analysis of attached flows, separated flows and dynamic vortices. According to the operating conditions of wind turbine airfoils, the method for evaluating dynamic stall coefficients associated with the separated flows and dynamic vortices in the B-L model was amended. The amended model was also extended to produce transient aerodynamic force coefficients over the entire range of possible angles of attack. The lift, drag and pitch moment coefficients of wind turbine airfoils S809 and NACA 4415 during dynamic stall were calculated. The simulation results showed good agreement with experimental data. Compared with the original B-L model, the present model shows considerable improvements in accuracy when predicting the transient aerodynamic force coefficients and is capable of producing better dynamic stall estimations.

     

/

返回文章
返回