硫酸盐侵蚀下水泥净浆膨胀应变计算

殷光吉, 左晓宝, 孙伟, 汤玉娟

殷光吉, 左晓宝, 孙伟, 汤玉娟. 硫酸盐侵蚀下水泥净浆膨胀应变计算[J]. 工程力学, 2015, 32(9): 119-125. DOI: 10.6052/j.issn.1000-4750.2014.02.0108
引用本文: 殷光吉, 左晓宝, 孙伟, 汤玉娟. 硫酸盐侵蚀下水泥净浆膨胀应变计算[J]. 工程力学, 2015, 32(9): 119-125. DOI: 10.6052/j.issn.1000-4750.2014.02.0108
YIN Guang-ji, ZUO Xiao-bao, SUN Wei, TANG Yu-juan. NUMERICAL SIMULATION OF THE EXPANSIVE STRAIN IN CEMENT PASTE SUBJECTED TO SULFATE ATTACK[J]. Engineering Mechanics, 2015, 32(9): 119-125. DOI: 10.6052/j.issn.1000-4750.2014.02.0108
Citation: YIN Guang-ji, ZUO Xiao-bao, SUN Wei, TANG Yu-juan. NUMERICAL SIMULATION OF THE EXPANSIVE STRAIN IN CEMENT PASTE SUBJECTED TO SULFATE ATTACK[J]. Engineering Mechanics, 2015, 32(9): 119-125. DOI: 10.6052/j.issn.1000-4750.2014.02.0108

硫酸盐侵蚀下水泥净浆膨胀应变计算

基金项目: 国家自然科学基金项目(51378262); 国家“973”计划项目(2009CB623203); 江苏省自然科学基金项目(BK20141396); 南京理工大学; 研究生科研创新/实践计划项目
详细信息
    作者简介:

    殷光吉(1990―),男,浙江人,硕士生,研究混凝土材料(E-mail: yinxjlove@163.com); 孙 伟(1935―),女,山东人,教授,博导,院士,从事水泥基材料研究(E-mail: sunwei@seu.edu.cn); 汤玉娟(1989―),女,江苏人,博士生,从事混凝土材料研究(E-mail: tyjdsr19891103@163.com).

    通讯作者:

    左晓宝(1968―),男,安徽人,教授,博士,博导,从事混凝土材料与结构、防灾工程研究(E-mail: xbzuo@sina.com).

NUMERICAL SIMULATION OF THE EXPANSIVE STRAIN IN CEMENT PASTE SUBJECTED TO SULFATE ATTACK

  • 摘要: 针对硫酸盐侵蚀过程中水泥净浆体积膨胀问题,运用微孔力学理论,建立了水泥净浆基体与其孔隙内钙矾石晶体相互作用的代表性体积单元(RVE)及其力学分析模型;分析了一定钙矾石生成量下的RVE内膨胀应变在微观尺度上的空间分布规律;通过均匀化方法,将微观尺度上的RVE内膨胀应变转化为宏观尺度上RVE所在位置点的等效应变,分析了该等效应变随钙矾石生成量的变化规律。分析结果表明:微观尺度上,孔隙率为0.1的RVE内钙矾石晶体和侵蚀溶液组成的内球体各向为拉应变,水泥净浆外球壳径向为压应变、环向为拉应变;宏观尺度上,孔隙率为0.1的RVE所在位置点的径向等效应变为压应变,且随钙矾石生成量的增加而增大,而环向等效应变为拉应变,且随钙矾石的生成量的增加而增大。
    Abstract: To investigate the volume expansive of cement paste subjected to sulfate attack, based on microporous mechanics, this paper established the mechanics model of representative volume element (RVE) composed by cement paste matrix and ettringite crystal. From microcosmic scale, the distribution of expansive strain within RVE under a certain amount of ettringite formation is analyzed. Based on homogenization method, the expansive strain of RVE on microcosmic scale is converted to the expansive equivalent strain of RVE locative point on macroscopic scale. And the variation regularity of expansive equivalent strain with the amount of ettringite formation is studied. The results show that on microcosmic scale, the isotropic strain of ettringite sphere with RVE of 0.1 porosity is tensile strain, the radial strain of cement matrix spherical shell is compressive strain, but the hoop strain is tensile strain. On macroscopic scale, for RVE of 0.1 porosity, the radial expansive equivalent strain is compressive strain, the hoop expansive equivalent strain is tensile strain, and they both increase with the larger amount of ettringite formation.
  • [1] Shi X M, Xie N, Fortune K, Gong J. Durability of steel reinforced concrete in chloride environments: an overview [J]. Construct and Building Materials, 2012, 30(5): 125―138.
    [2] 夏辉, 周新刚, 李克非. 不同暴露条件下海工混凝土耐久性几何效应分析[J]. 工程力学, 2013, 30(9): 227―233. Xia Hui, Zhou Xingang, Li Kefei. The In-situ monitoring principles and the residual life prediction of the durability of concrete structure in marine environment [J]. Engineering Mechanics, 2013, 30(9): 227―233. (in Chinese)
    [3] Sun Wei. Durability and service life of structural concrete under load and environment coupling effects [J]. Journal of Southeast University, 2006, 36(Suppl 2): 7―14 (in Chinese).
    [4] Neville A. The confused world of sulfate attack on concrete [J]. Cement and Concrete Research, 2004, 34(8): 1275―1296.
    [5] Suleiman A R, Soliman A M, Nehdi M L. Effect of surface treatment on durability of concrete exposed to physical sulfate attack [J]. Construction and Building Materials, 2014, 73: 674―681.
    [6] Reading T J. Physical aspects of sodium sulfate attack on concrete [M]. Farmington Hills, MI: ACI SP-77, 1982: 75―81.
    [7] Ma K, Xie Y, Long G, et al. Deterioration characteristics of cement mortar by physical attack of sodium sulfate [J]. Journal of the Chinese Ceramic Society, 2007, 35(10): 1376―1381.
    [8] 张英姿, 赵颖华, 范颖芳. 受酸雨侵蚀混凝土弹性模量研究[J]. 工程力学, 2011, 28(2): 175―180. Zhang Yingzi, Zhao Yinghua, Fan Yingfang. A theoretical model for assessing elastic modulus of concrete corroded by acid rain [J]. Engineering Mechanics, 2011, 28(2): 175―180. (in Chinese)
    [9] Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results [J]. Cement and Concrete Research, 2002, 32(6): 915―921.
    [10] Paulo J M, Monteiro, Kimberly E, Kurtis. Time to failure for concrete exposed to severe sulfate attack [J]. Cement and Concrete Research, 2003, 33(7): 987―993.
    [11] Persson Bertil. Sulphate resistance of self-compacting concrete [J]. Cement and Concrete Research, 2003, 33(12): 1933―1938.
    [12] 金祖权, 孙伟, 张云升, 等. 混凝土在硫酸盐、氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5): 630―635. Jin Zuquan, Sun Wei, Zhang Yunsheng, et al. Damage of concrete in sulfate and chloride solution [J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 630―635. (in Chinese)
    [13] Shannag M J, Shaia H A. Sulfate resistance of high- performance concrete [J]. Cement and Concrete Composites, 2003, 25(3): 363―369.
    [14] 邓德华, 肖佳, 元强, 等. 石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理 [J]. 硅酸盐学报, 2006, 34(10): 1243―1248. Deng Dehua, Xiao Jia, Yuan Qiang, et al. Effect of limestone powder on the sulfate-resistance of materials based on cement and its mechanism [J]. Journal of the Chinese Ceramic Society, 2006, 34(10): 1243―1248. (in Chinese)
    [15] Clifton J R, Ponnersheim J M. Sulfate attack of cementitious materials: volumetric relations and expansions [R]. Lewisburg: Building and Fire Research, National Institute of Standards and Technology Gaithersburg, 1994: 1―22.
    [16] Casanova I, Aguado A, Agullo L. Aggregate expansivity due to sulfide oxidation-II Physicochemical modeling of sulfate attack [J]. Cement and Concrete Research, 1997, 27(11): 1627―1632.
    [17] Tixier R, Mobasher B, Asce M. Modeling of damage in cement-based materials subjected toexternal sulfate attack. II: Comparison with experiments [J]. Journal of Materials in Civil Engineering, 2003, 15(4): 314―322.
    [18] Bary B. Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(14): 1791―1816.
    [19] 左晓宝, 孙伟. 硫酸盐侵蚀下的混凝土损伤破坏全过程[J]. 硅酸盐学报, 2009, 37(7): 1063―1067. Zuo Xiaobao, Sun Wei. Full process analysis of damage and failure of concrete subjected to external sulfate attack [J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1063―1067. (in Chinese)
    [20] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2006: 213―215. Xu Zhilun. Elasticity mechanics [M]. Beijing: Higher Education Press, 2006: 213―215. (in Chinese)
    [21] Mori T, Tanaka K. Average stress in an average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgica, 1973, 21(5): 571―574.
    [22] Zuo X B, Sun W. Numerical investigation on expansive volume strain in concrete subjected to sulfate attack [J]. Construction and Building Materials, 2012, 36: 404―410.
  • 期刊类型引用(5)

    1. 金立兵,武甜,乔林冉,薛鹏飞,吴强. 硫酸盐对混凝土侵蚀过程的细观数值分析. 混凝土. 2024(06): 1-5 . 百度学术
    2. 杨桃,魏丽君,许睿霖,陈英豪,罗正东. 铅锌矿尾砂水稳层力学及耐久性研究. 市政技术. 2024(08): 85-92 . 百度学术
    3. 王鹏程,叶阳升,尧俊凯,陈锋,张千里. 硫酸盐侵蚀条件下无砟轨道路基上拱特性研究. 铁道学报. 2021(06): 135-140 . 百度学术
    4. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
    5. 王佳林,左晓宝,马强,殷光吉,汤玉娟. 硫酸盐侵蚀下轴心受压钢筋混凝土柱应力时变过程的数值分析. 土木建筑与环境工程. 2018(01): 30-38 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  349
  • HTML全文浏览量:  18
  • PDF下载量:  83
  • 被引次数: 14
出版历程
  • 收稿日期:  2014-02-16
  • 修回日期:  2014-07-13
  • 刊出日期:  2015-09-24

目录

    /

    返回文章
    返回