含机构位移起重机主副臂组合臂架结构几何非线性分析

王刚, 齐朝晖, 孔宪超

王刚, 齐朝晖, 孔宪超. 含机构位移起重机主副臂组合臂架结构几何非线性分析[J]. 工程力学, 2015, 32(7): 210-218. DOI: 10.6052/j.issn.1000-4750.2013.12.1176
引用本文: 王刚, 齐朝晖, 孔宪超. 含机构位移起重机主副臂组合臂架结构几何非线性分析[J]. 工程力学, 2015, 32(7): 210-218. DOI: 10.6052/j.issn.1000-4750.2013.12.1176
WANG Gang, QI Zhao-hui, KONG Xian-chao. GEOMETRIC NONLINEAR ANALYSIS FOR CRANE MAIN AND SUB-BOOM STRUCTURES WITH MECHANISM DISPLACEMENTS[J]. Engineering Mechanics, 2015, 32(7): 210-218. DOI: 10.6052/j.issn.1000-4750.2013.12.1176
Citation: WANG Gang, QI Zhao-hui, KONG Xian-chao. GEOMETRIC NONLINEAR ANALYSIS FOR CRANE MAIN AND SUB-BOOM STRUCTURES WITH MECHANISM DISPLACEMENTS[J]. Engineering Mechanics, 2015, 32(7): 210-218. DOI: 10.6052/j.issn.1000-4750.2013.12.1176

含机构位移起重机主副臂组合臂架结构几何非线性分析

基金项目: 国家自然科学基金项目(11372057)
详细信息
    作者简介:

    王 刚(1987-),男,安徽人,博士生,主要从事机械结构分析和机械系统动力学研究(E-mail: wanggang@mail.dlut.edu.cn); 孔宪超(1978-),男,河南人,博士生,主要从事机械结构稳定性研究(E-mail: kxcemail@163.com).

    通讯作者:

    齐朝晖(1964-),男,吉林人,教授,博士,博导,主要从事多体系统动力学和复杂机械系统动力学研究(E-mail: zhaohuiq@dlut.edu.cn).

GEOMETRIC NONLINEAR ANALYSIS FOR CRANE MAIN AND SUB-BOOM STRUCTURES WITH MECHANISM DISPLACEMENTS

  • 摘要: 工程中很多起重机械含有控制吊重位置的机构,这些附加机构约束了起重机臂架结构承载变形后的位置。机构的作用可以等效为施加到结构上的广义外力,这些外力与结构位移和机构自由度是高度耦合的。对臂架结构按长度方向划分了多个子结构,将子结构的内部位移凝聚到了左右端面上。基于共旋坐标法,建立了随子结构一起运动的随动坐标系,推导了子结构单元的广义节点内力。以履带式起重机的主副臂组合臂架结构为例,考虑到臂架需要通过变幅机构进行约束和控制,给出了机构位移附加在臂架上的广义节点外力及其导数。最后,通过起重机的副臂工况算例,给出了在不同载荷下臂架结构位移以及约束机构位移,验证了分析方法的正确性和合理性。
    Abstract: A majority of lifting machineries contain the mechanisms for positioning heavy weights. These additional mechanisms constrain the locations of boom structures after deformation under loads, which can be considered as generalized applied forces related to structure and mechanism displacements. Boom structures are divided into several substructures along the longitudinal direction, and internal displacements of each substructure are reduced to the displacements of its left and right ends. Based on the Co-rotational method, an embedded coordinate system is defined, and a set of generalized nodal internal forces for substructure elements are formulated. Taking main and sub-boom structures of crawler cranes for an example and considering that the boom structures are constrained and controlled by derricking mechanisms, the additional nodal external forces and their derivatives on the substructure element nodes are obtained. At last, a numerical example of sub-boom working conditions for a kind of crawler crane is presented, in which the displacements of boom structures and mechanisms under different load conditions are obtained. The numerical example proves the validity and rationality of the analytical procedure.
  • [1] 罗尧治, 董石麟. 含可动机构的杆系结构非线性力法分析[J]. 固体力学学报, 2002, 23(3): 288―294. Luo Yaozhi, Dong Shilin. Nonlinear force method analysis for space truss with mobile mechanisms [J]. Acta Mechanica Solida Sinica, 2002, 23(3): 288―294. (in Chinese)
    [2] 郑君华, 袁行飞, 董石麟, 等. 基于大变形分析的动不定体系的求解[J]. 计算力学学报, 2008, 25(3): 310―314. Zheng Junhua, Yuan Xingfei, Dong Shilin, et al. Calculation of kinematically indeterminate system based on large deformation analysis [J]. Chinese Journal of Computational Mechanics, 2008, 25(3): 310―314. (in Chinese)
    [3] 罗晓明, 齐朝晖, 许永生, 等. 含有整体刚体位移杆件系统的几何非线性分析[J]. 工程力学, 2011, 28(2): 62―68. Luo Xiaoming, Qi Zhaohui, Xu Yongsheng, et al. Geometric nonlinear analysis of truss systems with rigid body motions [J]. Engineering Mechanics, 2011, 28(2): 62―68. (in Chinese)
    [4] 王忠全, 张其林, 常治国. 可变体系运动与变形混合问题的拟动力解法[J]. 工程力学, 2012, 29(5): 47―52. Wang Zhongquan, Zhang Qilin, Chang Zhiguo. Pseudo-dynamic solution for motion-deformation hybrid problem of mechanism systems [J]. Engineering Mechanics, 2012, 29(5): 47―52. (in Chinese)
    [5] 张正元. 塔机水平臂主载荷下线性和非线性变形与内力[J]. 同济大学学报, 2000, 28(6): 731―737. Zhang Zhengyuan. Linear and nonlinear deformation and internal force of two-hanging point horizontal boom of tower crane [J]. Journal of Tongji University, 2000, 28(6): 731―737. (in Chinese)
    [6] 周慎杰, 王锡平, 李文娟, 等. 履带起重机臂架有限元分析方法[J]. 山东大学学报(工学版), 2005, 35(1): 22―26. Zhou Shenjie, Wang Xiping, Li Wenjuan, et al. The finite element analysis for the boom and jib of crawler cranes [J]. Journal of Shandong University (Engineering Science), 2005, 35(1): 22―26. (in Chinese)
    [7] Crisfield M A, Moita G F. A unified co-rotational framework for solids, shells and beams [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2969―2992.
    [8] Felippa C A, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 2285―2235.
    [9] 张年文, 童根树. 平面框架几何非线性分析的修正拉格日-协同转动联合法[J]. 工程力学, 2009, 26(8): 100―106, 130. Zhang Nianwen, Tong Genshu. A corotational updated Lagrangian formulation for geometrically nonlinear analysis of 2D frames [J]. Engineering Mechanics, 2009, 26(8): 100―106, 130. (in Chinese)
    [10] 古雅琦, 王海龙, 杨怀宇. 一种大变形几何非线性Euler-Bernoulli梁单元[J]. 工程力学, 2013, 30(6): 11―15. Gu Yaqi, Wan Hailong, Yang Huaiyu. A large deformation geometric nonlinear Euler-Bernoulli beam element [J]. Engineering Mechanics, 2013, 30(6): 11―15. (in Chinese)
    [11] Li Z X. A stabilized co-rotational curved quadrilateral composite shell element [J]. International Journal for Numerical Methods in Engineering, 2011, 86(8): 975―999.
    [12] 邓继华, 邵旭东, 邓潇潇. 四边形八节点共旋法平面单元的几何非线性分析[J]. 工程力学, 2011, 28(7): 6―12. Deng Jihua, Shao Xudong, Deng Xiaoxiao. Geometrically nonlinear analysis using a quadrilateral 8-node co-rotational plane element [J]. Engineering Mechanics, 2011, 28(7): 6―12. (in Chinese)
    [13] 孟丽霞, 陆念力, 王佳. 基于静力凝聚的高精度变截面梁单元及其几何非线性分析研究[J]. 工程力学, 2013, 30(10): 257―263. Meng Lixia, Lu Nianli, Wang Jia. The geometric nonlinearity analysis of high accuracy tapered beam element based on the static condensation [J]. Engineering Mechanics, 2013, 30(10): 257―263. (in Chinese)
    [14] 齐朝晖, 孔宪超, 李坦. 复杂系统子结构界面缝合方法[J]. 工程力学, 2013, 30(9): 10―15, 21. Qi Zhaohui, Kong Xianchao, Li Tan. Substructure technique in the analysis of large-scale structure based on interfaces seaming [J]. Engineering Mechanics, 2013, 30(9): 10―15, 21. (in Chinese)
    [15] Ibrahimbegovic A. On the choice of finite rotation parameters [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 149(1/2/3/4): 49―71.
  • 期刊类型引用(8)

    1. 张堆学. 塔式起重机起吊全过程力学特性研究. 兰州理工大学学报. 2024(04): 55-59 . 百度学术
    2. 於祖庆,顾子健,兰朋,田青龙. 塔式起重机刚柔耦合多体系统建模与降阶方法. 动力学与控制学报. 2024(08): 58-65 . 百度学术
    3. 徐金帅,齐朝晖,高凌翀,卓英鹏,李强. 一种超级梁单元桁架式臂架结构强度荷载计算. 大连理工大学学报. 2021(02): 118-128 . 百度学术
    4. 刘士明,刘俊汝,孟丽霞. 超起拉索非保向力作用下伸缩臂几何非线性分析. 机械设计与制造. 2021(05): 88-91 . 百度学术
    5. 杨微,刘士明,王宇诺,孟丽霞. 全地面起重机组合臂架系统非线性分析. 机电产品开发与创新. 2021(04): 108-110 . 百度学术
    6. 颜世军,彭剑,任中俊,王世鸣. 基于等效简化模型的柔性吊装多体系统动力响应分析. 振动与冲击. 2020(18): 255-261 . 百度学术
    7. 高顺德,朱磊,徐金帅,马晨旭. 一种基于Matlab的桁架臂单元快速建模方法. 中国工程机械学报. 2020(06): 498-503+509 . 百度学术
    8. 颜世军,刘运思,彭剑. 超长柔吊装臂架回转作业刚柔耦合动力学模型与分析. 应用力学学报. 2018(06): 1288-1294+1421 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  345
  • HTML全文浏览量:  31
  • PDF下载量:  160
  • 被引次数: 12
出版历程
  • 收稿日期:  2013-12-17
  • 修回日期:  2014-04-20
  • 刊出日期:  2015-07-24

目录

    /

    返回文章
    返回