矩形截面高层建筑扭转向脉动风荷载数学模型

李永贵, 李秋胜, 戴益民

李永贵, 李秋胜, 戴益民. 矩形截面高层建筑扭转向脉动风荷载数学模型[J]. 工程力学, 2015, 32(6): 177-182. DOI: 10.6052/j.issn.1000-4750.2013.11.1105
引用本文: 李永贵, 李秋胜, 戴益民. 矩形截面高层建筑扭转向脉动风荷载数学模型[J]. 工程力学, 2015, 32(6): 177-182. DOI: 10.6052/j.issn.1000-4750.2013.11.1105
LI Yong-gui, LI Qiu-sheng, DAI Yi-min. MATHEMATICAL MODELS FOR TORSIONAL FLUCTUATING WIND LOADS ON RECTANGULAR TALL BUILDINGS[J]. Engineering Mechanics, 2015, 32(6): 177-182. DOI: 10.6052/j.issn.1000-4750.2013.11.1105
Citation: LI Yong-gui, LI Qiu-sheng, DAI Yi-min. MATHEMATICAL MODELS FOR TORSIONAL FLUCTUATING WIND LOADS ON RECTANGULAR TALL BUILDINGS[J]. Engineering Mechanics, 2015, 32(6): 177-182. DOI: 10.6052/j.issn.1000-4750.2013.11.1105

矩形截面高层建筑扭转向脉动风荷载数学模型

基金项目: 湖南省自然科学基金项目(14JJ6026); 国家自然科学基金项目(51178179); 国家自然科学基金重大研究计划项目(91215302); 广西防灾减灾与结构安全重点实验室开放课题项目(2013ZDK 06)
详细信息
    作者简介:

    李永贵(1981―),男,湖北武汉人,讲师,博士,从事结构风工程研究(E-mail: lyg313@126.com);戴益民(1972―),男,湖南新化人,副教授,博士,从事结构风工程研究(E-mail: dymzzy@163.com).

    通讯作者:

    李秋胜(1962―),男,湖南永州人,教授,博士,博导,中组部千人计划国家特骋专家,长江学者讲座教授,从事结构风工程研究(E-mail: bcqsli@cityu.edu.hk).

  • 中图分类号: TU312

MATHEMATICAL MODELS FOR TORSIONAL FLUCTUATING WIND LOADS ON RECTANGULAR TALL BUILDINGS

  • 摘要: 在边界层风洞中完成了一系列矩形截面高层建筑刚性模型的同步测压试验,研究了根方差扭矩系数和基底扭矩功率谱的基本特性。结果表明,层根方差扭矩系数沿高度呈抛物线分布,基底根方差扭矩系数随厚宽比的增大而增大。厚宽比小于1时,基底扭矩功率谱有一个明显的窄带谱峰;厚宽比大于1时,出现两个谱峰,随着厚宽比的增大,两个谱峰逐渐靠近。以厚宽比为自变量,拟合得到了根方差扭矩系数和基底扭矩功率谱的计算公式。
    Abstract: Detailed wind tunnel tests for a series of rectangular tall buildings were carried out. The basic characteristics of torsional fluctuating wind loads including the RMS torque coefficients and power spectral densities (PSDs) of base torque were discussed. The results show that the local RMS torque coefficients clearly demonstrate parabolic variations with the building height. The base RMS torque coefficients increase with the increase of side ratios. One obvious narrow-band peak is observed in the PSDs of base torque when the side ratio is less than 1, while two obvious peaks are found in the PSDs of base torque when the side ratio is larger than 1. The reduced frequencies corresponding to the two peaks approach to each other with the increase of side ratios. Furthermore, the formulas of the RMS torque coefficients and PSDs of base torque were also obtained by selecting the side ratio as a fitting parameter.
  • [1] Solari G. Mathmatical model to predict 3-D wind loading on buildings [J]. Journal of Engineering Mechanics, 1985, 111(2): 254―276.
    [2] Isyumov N, Poole M. Wind induced torque on square and rectangular building shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13(1/2/3): 183―196.
    [3] Tamura Y, Ohkuma T, Okada H, et al. Wind loading standards and design criteria in Japan [J]. Journal of Wind Engineering and Industrial Aerodynamic, 1999, 83(1/2/3): 555―566.
    [4] 梁枢果, 瞿伟廉, 李桂青. 高层建筑横风向与扭转风振力计算[J]. 土木工程学报, 1991, 24(4): 65―73.
    Liang Shuguo, Qu Weilian, Li Guiqing. An evaluation of dynamic loads in across-wind direction and torsion on tall buildings [J]. China Civil Engineering Journal, 1991, 24(4): 65―73. (in Chinese)
    [5] Kareem A. Wind induced torsional loads on structures [J]. Engineering structure, 1981, 3(2): 85―86.
    [6] Cheung J C K, Melbourne W H. Torsional moments of tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1/2/3): 1125―1126.
    [7] Kanda J, Choi H. Correlating dynamic wind force components on 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1/2/3): 785―796.
    [8] Choi H, Kanda J. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993(46/47): 507―516.
    [9] Liang S, Li Q S, Liu S, Zhang L, Gu M. Torsional dynamic wind loads on rectangular tall buildings [J]. Engineering Structures, 2004, 26(1): 129―137.
    [10] [Lin N, Letchford C, Tamura Y, Liang B, Nakamura O. Characteristics of wind forces acting on tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(3): 217―242.
    [11] 唐意, 顾明, 全涌. 高层建筑的扭转风荷载功率谱密度[J]. 同济大学学报(自然科学版), 2007, 35(4): 435―449. Tang Yi, Gu Ming, Quan Yong. Power spectral densities of torsional wind loads on tall buildings [J]. Journal of Tongji University (Natural Science), 2007, 35(4): 435―449. (in Chinese)
    [12] 唐意, 顾明, 全涌. 矩形截面超高层建筑风致脉动扭矩的数学模型[J]. 建筑结构学报, 2009, 30(5): 198―204. Tang Yi, Gu Ming, Quan Yong. Mathematical model of torsional fluctuating wind force on rectangular super-tall buildings [J]. Journal of Building Structures, 2009, 30(5): 198―204. (in Chinese)
    [13] AIJ Recommendations for Loads on Buildings [S]. Tokyo, Japan: Architectural Institute of Japan, 2004.
    [14] Zhou Y, Kijewski T, Kareem A. Aerodynamic loads on tall buildings: Interactive database [J]. Journal of Structural Engineering, 2003, 129(3): 394―404.
    [15] 余世策, 韩新刚, 冀晓华, 等. 测压管路动态特性实测技术研究[J]. 实验技术与管理, 2012: 29(2): 40―43. Yu Shice, Han Xingang, Ji Xiaohua, et al. Study on measurement technology of dynamics characteristics of typical tubes for pressure measurements [J]. Experimental Technology and Management, 2012: 29(2): 40―43. (in Chinese)
    [16] 梁枢果, 邹良浩, 郭必武. 基于刚性模型测压风洞试验的武汉国际证券大厦三维风致响应分析[J]. 工程力学, 2009, 26(3): 118―127.
    Liang Shuguo, Zou Lianghao, Guo Biwu. Investigation on wind-induced 3-D responses of Wuhan International Stock Building based on wind tunnel tests of rigid models [J]. Engineering Mechanics, 2009, 26(3): 118―127. (in Chinese)
    [17] Gu M, Quan Y. Across-wind loads of typical tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(13): 1147―1165.
    [18] 顾明, 唐意, 全涌. 矩形截面超高层建筑风致脉动扭矩的基本特征[J]. 建筑结构学报, 2009, 30(5): 191―197 .
    Gu Ming, Tang Yi, Quan Yong. Basic characteristics of torsional fluctuating wind force on rectangular super-tall buildings [J]. Journal of Building Structures, 2009, 30(5): 191―197. (in Chinese)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  23
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 修回日期:  2014-06-25
  • 刊出日期:  2015-06-24

目录

    /

    返回文章
    返回