锚杆支护圆形隧洞弹塑性解

孟强, 赵洪波, 茹忠亮, 李东利

孟强, 赵洪波, 茹忠亮, 李东利. 锚杆支护圆形隧洞弹塑性解[J]. 工程力学, 2015, 32(7): 17-25. DOI: 10.6052/j.issn.1000-4750.2013.11.1057
引用本文: 孟强, 赵洪波, 茹忠亮, 李东利. 锚杆支护圆形隧洞弹塑性解[J]. 工程力学, 2015, 32(7): 17-25. DOI: 10.6052/j.issn.1000-4750.2013.11.1057
MENG Qiang, ZHAO Hong-bo, RU Zhong-liang, LI Dong-li. ANALYTICAL SOLUTION FOR CIRCULAR TUNNELS WITH ROCK BOLTS[J]. Engineering Mechanics, 2015, 32(7): 17-25. DOI: 10.6052/j.issn.1000-4750.2013.11.1057
Citation: MENG Qiang, ZHAO Hong-bo, RU Zhong-liang, LI Dong-li. ANALYTICAL SOLUTION FOR CIRCULAR TUNNELS WITH ROCK BOLTS[J]. Engineering Mechanics, 2015, 32(7): 17-25. DOI: 10.6052/j.issn.1000-4750.2013.11.1057

锚杆支护圆形隧洞弹塑性解

基金项目: 国家自然科学基金项目(41072224,41172244)
详细信息
    作者简介:

    赵洪波(1972-),男,河北人,教授,博士,从事岩土力学智能分析方法研究(E-mail: hbzhao@hpu.edu.cn); 茹忠亮(1977-),男,山西人,教授,博士,从事结构工程计算研究(E-mail: ruzhongliang@hotmail.com); 李东利(1986-),男,河南人,硕士,从事岩土工程不确定性分析研究(E-mail: studentmc@126.com).

ANALYTICAL SOLUTION FOR CIRCULAR TUNNELS WITH ROCK BOLTS

  • 摘要: 该文推导了锚杆支护前后圆形隧洞的应力、位移和塑性区半径表达式。首先考虑静水压力状态下,岩石表现为弹脆塑性材料模型,采用Mohr-Coulomb线性屈服准则以及非关联流动法则,推导了无支护状态下圆形隧洞的弹塑性解析新解。在此基础上,通过均匀化方法,从宏观尺度将锚杆高密度支护模式下的岩石和锚杆复合体考虑成均匀连续、强度参数增强的等效材料,定义能够反映隧洞支护参数的锚杆密度因子,推导出等效弹性模量,等效粘聚力和等效内摩擦角的表达式,然后通过该文得到的隧洞在无支护状态下的解析解可以得到锚杆支护圆形隧洞解析解。最后将该文结果与前人研究结果及数值结果进行了比较分析,对比了锚杆支护前后圆形隧洞的塑性区半径、塑性区位移和塑性区应力,结果表明锚杆支护对隧洞的加固效果明显,该文结果可为地下工程中圆形隧洞的稳定性分析提供参考。
    Abstract: Analytical expressions of stress, displacement, and plastic zone radius in circular tunnels with or without rock bolts are presented. Considering a circular tunnel in hydrostatic stress field, with elastic-brittle-plastic rock mass, a linear Mohr-Coulomb yield criterion, and a non-associated flow rule, a new elastoplastic analytical solution for unsupported circular tunnels was derived. Based on the homogenization method, considering the composite material of rock mass and rock bolts as a new homogeneous, isotropic, parameter-strengthened equivalent material, the bolt density parameter was defined to reflect the influence of a high density support pattern of rock bolts, thus an equivalent Young’s modulus, equivalent cohesion, and equivalent friction angle for supported circular tunnels can be derived. Then an analytical solution for circular tunnel with rock bolts can be derived based on the new elastoplastic analytical solution without rock bolts. Bolt support was shown to be effective in reducing plastic zone radius and displacement of circular tunnel by comparison with an unsupported tunnel, also comparative analysis was undertaken using existing results and numerical solutions; the solutions derived provide reference for circular tunnel stability analysis in underground engineering.
  • [1] Brown E T, Bray J W, Ladanyi B, Hoek E. Ground response curves for rock tunnels [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1983, 109: 15―39.
    [2] Ogawa T, Lo K Y. Effects of dilatency and yield criteria on displacements around tunnels [J]. Canadian Geotechnical Journal, 1987, 24: 100―113.
    [3] Wang Y. Ground response of circular tunnels in poorly consolidated rock [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1996, 122: 703―708.
    [4] Sharan S K. Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40: 817―824.
    [5] Sharan S K. Exact and approximate solutions for displacements around circular openings in elastic-brittle-plastic Hoek-Brown rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42: 542―549.
    [6] Sharan S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 78―85.
    [7] Park K H, Kim Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43: 616―622.
    [8] Osgoui R R. Ground reaction curve of reinforced tunnel using a new elasto-plastic model [D]. Turin: The Technical University of Turin, 2006.
    [9] Reed M B. Stresses and displacements around a cylindrical cavity in soft rock [J]. Ima Journal of Applied Mathematics, 1986, 36: 223―245.
    [10] 蒋斌松, 张强, 贺永年, 等. 深部圆形巷道破裂围岩的弹塑性分析[J]. 岩石力学与工程学报, 2007, 26(5): 982―986. Jiang Binsong, Zhang Qiang, He Yongnian, et al. Elastoplastic analysis of cracked surrounding rocks in deep circular openings [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 982―986. (in Chinese)
    [11] 郑雨天. 岩石力学的弹塑粘性理论基础[M]. 北京: 煤炭工业出版社, 1988: 241. Zheng Yutian. The elastoplastic viscous theories of rock mechanics [M]. Beijing: China Coal Industry Publishing House, 1988: 241. (in Chinese)
    [12] Li C, Stillborg B. Analytical models for rock bolts [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 1013―1029.
    [13] Cai Y, Esaki T, Jiang Y J. An analytical model to predict axial load in grouted rock bolt for soft rock tunneling [J]. Tunneling and Underground Space Technology, 2004, 19: 607―618.
    [14] Fahimifar A, Soroush H. A theoretical approach for analysis of the interaction between grouted rockbolts and rock masses [J]. Tunneling and Underground Space Technology, 2005, 20: 333―343.
    [15] Sebastiano Pelizza, Sang-Hwan Kim, Jong-Soo Kim. A study of strength parameters in the reinforced ground by rock bolts [C]. Seoul: Proceedings of the World Tunnel Congress and 32nd ITA Assembly, 2006: 06―0385.
    [16] Indraratna B, Kaiser P K. Analytical model for the design of grouted rock bolts [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14: 227―251.
    [17] Bobet A, Einstein H H. Tunnel reinforcement with rockbolts [J]. Tunneling and Underground Space Technology, 2011, 26: 100―123.
    [18] 麦倜曾, 张玉军. 锚固岩体力学性质的研究[J]. 工程力学, 1987, 4(1): 106―116. Mai Tizeng, Zhang Yujun. Research of the bolted rocks statical behavior [J]. Engineering Mechanics, 1987, 4(1): 106―116. (in Chinese)
    [19] 杨双锁, 张百胜. 锚杆对岩土体作用的力学本质[J]. 岩土力学, 2003, 24(增刊): 279―282. Yang Shuangsuo, Zhang Baisheng. The influence of bolt action force to the mechanical property of rocks [J]. Rock and Soil Mechanics, 2003, 24(Suppl): 279―282. (in Chinese)
    [20] 朱浮声, 郑雨天. 全长粘结式锚杆的加固作用分析[J]. 岩石力学与工程学报, 1996, 15(1996): 333―337. Zhu Fusheng, Zheng Yutian. Support action analysis of tensioned and grouted bolts [J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1996): 333―337. (in Chinese)
    [21] 方勇, 何川. 全长粘结式锚杆与隧道围岩相互作用研究[J]. 工程力学, 2007, 24(6): 111―116. Fang Yong, He Chuan. Study on the interaction of whole bonded rock bolt and tunnel surrounding rock [J]. Engineering Mechanics, 2007, 24(6): 111―116. (in Chinese)
    [22] 任青文, 邱颖. 具有衬砌圆形隧洞的弹塑性解[J]. 工程力学, 2005, 22(2): 212―217. Ren Qingwen, Qiu Ying. Elastic-plastic solution of circular tunnel with liner [J]. Engineering Mechanics, 2005, 22(2): 212―217. (in Chinese)
    [23] 吴顺川, 潘旦光, 高永涛. 深埋圆形巷道围岩和衬砌相互作用解析解[J]. 工程力学, 2011, 28(3): 136―142. Wu Shunchuan, Pan Danguang, Gao Yongtao. Analytic solution for rock-liner interaction of deep circular tunnel [J]. Engineering Mechanics, 2011, 28(3): 136―142. (in Chinese)
    [24] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2006: 64. Xu Zhilun. Elasticity [M]. Beijing: Higher Education Press, 2006: 64. (in Chinese)
    [25] Hill R. The Mathematical theory of plasticity [M]. Oxford: Oxford Science Publications, 1950: 245.
    [26] 陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007: 367. Chen Mingxiang. Elasticity and plasticity [M]. Beijing: Science Press, 2007: 367. (in Chinese)
  • 期刊类型引用(28)

    1. 吴庆良,吴顺川,王惠贤. 非轴对称情况下圆形隧洞锚杆参数优化设计的解析方法. 应用基础与工程科学学报. 2025(01): 182-191 . 百度学术
    2. 张帅,王俊杰,张海龙,宋少贤,吴岱峰. 考虑刚度与强度劣化的洞室围岩弹塑性分析. 岩土工程学报. 2024(01): 101-109 . 百度学术
    3. 王惠贤,吴庆良,鲍安红,唐彬雪. 锚杆支护下两向不等压深埋隧洞受力与变形弹性分析. 科学技术与工程. 2024(02): 757-765 . 百度学术
    4. 郝艳广,徐建升,明道贵,雷霆,邱明喜,陈迪杨. 锚杆加固作用下椭圆形深埋隧洞承载力分析. 山东大学学报(工学版). 2024(01): 131-140 . 百度学术
    5. 贺杨,杨自友,高鹏,尚阳光,张煜,刘俊杰. 考虑温度和损伤的圆形巷道围岩弹塑性分析. 湖南工业大学学报. 2024(06): 1-8+28 . 百度学术
    6. 谭鑫,尹心,任亚坤,姚满,黄明华. 基于复合岩体法的锚杆支护隧道收敛修正分析. 地下空间与工程学报. 2023(01): 69-78 . 百度学术
    7. 席海龙,张凯,朱滨,胡宏博,吴红刚,周鑫陆. 基于均匀化方法的破碎千枚岩隧道稳定性分析. 铁道勘察. 2023(02): 38-43 . 百度学术
    8. 汪波,喻炜,訾信,董杰,严健. 基于统一强度理论的围岩–锚杆(索)弹塑性耦合分析. 岩石力学与工程学报. 2023(11): 2613-2627 . 百度学术
    9. 周晓敏,马文著,郭小红,张松,方雷伟,刘勇,和晓楠. 深厚含水围岩预锚注初期支护的圆洞力学模型及其开挖安全分析. 隧道建设(中英文). 2023(10): 1677-1691 . 百度学术
    10. 赵帮跃,佘海涛,段石金,虎胜,董海龙. 基于等效强度理论的锚固边坡稳定性分析. 四川建材. 2022(08): 78-80 . 百度学术
    11. 王鹏,杜国超,王理想,谢宁,董海龙. 桥基荷载对岸坡稳定性影响的研究. 四川建材. 2022(09): 149-151+153 . 百度学术
    12. 吴利华,高经纬,蒋迪. 深埋圆形隧道开挖地层应力和位移三维弹塑性解析分析. 建筑结构. 2022(S2): 2701-2705 . 百度学术
    13. 王腾,李萍,丁艳梅,宋彧. 基于D-P修正准则的扩孔理论在黄土劈裂注浆中的应用分析. 兰州理工大学学报. 2021(04): 135-141 . 百度学术
    14. 惠强,姜海波,张玉洁. 基于统一强度理论的热-力耦合作用下圆形隧洞的弹塑性解析解. 石河子大学学报(自然科学版). 2021(06): 697-705 . 百度学术
    15. 陈登国,高召宁,赵光明,李顺顺,赵呈星. 基于锚固力学效应巷道围岩稳定性分析. 煤炭学报. 2020(03): 1009-1019 . 百度学术
    16. 汤振山. 基于复合岩体的边坡锚杆支护数值模拟. 四川水泥. 2020(06): 279-280 . 百度学术
    17. 周晓敏,徐衍,刘书杰,和晓楠. 金矿超深立井含水围岩注浆加固的应力场和渗流场研究. 岩石力学与工程学报. 2020(08): 1611-1621 . 百度学术
    18. 张进鹏,刘立民,刘传孝,孙东玲,邵军,李扬. 基于预应力锚和自应力注的深部裂隙岩体锚注加固机制研究. 岩土力学. 2020(11): 3651-3662 . 百度学术
    19. 周茗如,卢国文,王腾,王晋伟. 结构性黄土劈裂注浆力学机理分析. 工程力学. 2019(03): 169-181 . 本站查看
    20. 谷拴成,李晓栋,周攀,胡晓开. 基于锚杆加固作用的圆形巷道围岩弹塑性分析. 煤炭工程. 2019(07): 84-88 . 百度学术
    21. 谷拴成,李晓栋,周攀. 考虑渗流作用的锚杆支护巷道围岩稳定性分析. 煤矿安全. 2019(08): 194-198 . 百度学术
    22. 保其长,彭守拙,钟建文,林葎. 均质围岩灌浆锚杆应力的近似解析解. 水力发电学报. 2019(11): 102-111 . 百度学术
    23. 周建,胡坚,王浩,杨新安. 深埋隧洞分步支护合理支护时机的力学研究. 工程力学. 2019(12): 145-152 . 本站查看
    24. 刘跃东,张镇,王涛. 不同钻孔深度下应力扰动对泥岩力学特性的影响. 煤炭学报. 2019(S1): 82-91 . 百度学术
    25. 谷拴成,周攀,黄荣宾. 巷道加固体围岩力学特征分析. 煤炭科学技术. 2018(05): 14-21 . 百度学术
    26. 李元勋,朱彦鹏,王邓峮. 预应力作用下深基坑桩锚支护结构整体稳定性分析研究. 工程力学. 2017(11): 167-174+239 . 本站查看
    27. 晏勤,李树忱,谢璨,王曼灵,丁奎. 锚杆加固作用下圆形隧道复合岩体围岩特征曲线解析方法研究. 岩石力学与工程学报. 2017(12): 3021-3027 . 百度学术
    28. 刘时鹏,施建勇,雷国辉,张兴胜. K_0固结饱和土体柱孔扩张问题一种相似解法. 工程力学. 2016(12): 128-134 . 本站查看

    其他类型引用(20)

计量
  • 文章访问数:  589
  • HTML全文浏览量:  52
  • PDF下载量:  192
  • 被引次数: 48
出版历程
  • 收稿日期:  2013-11-12
  • 修回日期:  2014-03-11
  • 刊出日期:  2015-07-24

目录

    /

    返回文章
    返回