FRP布加固具有中心裂纹板条的断裂疲劳性能

欧阳煜, 卞海涛, 杨峥

欧阳煜, 卞海涛, 杨峥. FRP布加固具有中心裂纹板条的断裂疲劳性能[J]. 工程力学, 2015, 32(3): 158-166. DOI: 10.6052/j.issn.1000-4750.2013.10.0913
引用本文: 欧阳煜, 卞海涛, 杨峥. FRP布加固具有中心裂纹板条的断裂疲劳性能[J]. 工程力学, 2015, 32(3): 158-166. DOI: 10.6052/j.issn.1000-4750.2013.10.0913
OUYANG Yu, BIAN Hai-tao, YANG Zheng. FRACTURE AND FATIGUE BEHAVIOR OF LATH WITH A CENTER CRACK STRENGTHENED WITH FRP SHEET[J]. Engineering Mechanics, 2015, 32(3): 158-166. DOI: 10.6052/j.issn.1000-4750.2013.10.0913
Citation: OUYANG Yu, BIAN Hai-tao, YANG Zheng. FRACTURE AND FATIGUE BEHAVIOR OF LATH WITH A CENTER CRACK STRENGTHENED WITH FRP SHEET[J]. Engineering Mechanics, 2015, 32(3): 158-166. DOI: 10.6052/j.issn.1000-4750.2013.10.0913

FRP布加固具有中心裂纹板条的断裂疲劳性能

详细信息
    作者简介:

    卞海涛(1991―),男,安徽芜湖人,硕士生,从事结构工程研究(E-mail: bht910922@126.com);杨 峥(1987―),男,河南南阳人,硕士生,从事结构工程研究(E-mail: yangzheng115@163.com).

    通讯作者:

    欧阳煜(1968―),男,福建泉州人,副教授,博士,从事(组合)结构稳定性、结构加固与修复研究(E-mail: oyy_wly@sina.com).

  • 中图分类号: O346; TU973.254

FRACTURE AND FATIGUE BEHAVIOR OF LATH WITH A CENTER CRACK STRENGTHENED WITH FRP SHEET

  • 摘要: 研究了FRP布加固具有中心穿透裂纹板条在两端拉伸载荷作用下的断裂和疲劳,得到了FRP布加固板条的界面剪应力,利用叠加原理和断裂力学的基本结果,推导了FRP加固板条裂纹尖端的应力强度因子解析表达式。在此基础上,分别给出了FRP加固具有中心穿透裂纹板条Paris和Elber模型的疲劳寿命预测公式,通过实例计算发现,循环荷载作用下FRP加固具有中心穿透裂纹板条的裂纹闭合效应非常显著,应采用Elber模型预测其疲劳寿命,而对于未加固的裂纹板条,应采用Paris模型预测其疲劳寿命。同时,参数分析表明:FRP布加固长度存在最优值,且FRP刚度对应力强度因子幅值影响显著,应力强度因子幅值随着FRP刚度的增加而减小,因此,其疲劳寿命延长。
    Abstract: Fracture and fatigue of a lath with a center crack strengthened with FRP sheet, subject to tensile loads at its two ends, was investigated, and the interfacial shear stress of the FRP-strengthened lath was obtained. Based on the superposition principle and the fracture mechanics, an analytical expression of the stress intensity factor at crack tip of the FRP-strengthened lath was derived. Then, the formulas of the fatigue life assessment of the FRP-strengthened lath with a center crack were presented with the Paris model and Elber model, respectively. From analysis of a numerical example, it was found that the effect of the crack closure is significant for the FRP-strengthened lath with a center crack under cyclic loading, and the Elber model should be employed to assess its fatigue life, while Paris model should be employed to assess fatigue life of the un-strengthened lath. Furthermore, the parameter study showed that there exists an optimal length of the FRP sheet, and the influence of the FRP stiffness on the amplitude of the stress intensity factor is significant. The amplitude of the stress intensity factor decreases when the FRP stiffness increases, resulting in an increased fatigue life.
  • [1] 黄培彦, 张术宽, 郑顺潮, 等. FRP片材在土建修复加固工程中应用的力学问题[J]. 固体力学学报, 2010, 31(5): 440―451. Huang Peiyan, Zhang Shukuan, Zheng Shunchao, et al. Mechanical problems on FRP laminate applied in civil and construction repairing and strengthening engineering [J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 440―451. (in Chinese)
    [2] Mota C, Alminar S, Svecova D. Critical review of deflection formulas for FRP-RC members [J]. Composites for Construction, 2006, 10(3): 183―194.
    [3] 彭福明, 张晓欣, 岳清瑞, 杨勇新. FRP加固金属拉伸构件的性能分析[J]. 工程力学, 2007, 24(3): 189―192. Peng Fuming, Zhang Xiaoxin, Yue Qingrui, Yang Yongxin. Performance analysis of tensile metallic members strengthened with FRP [J]. Engineering Mechanics, 2007, 24(3): 189―192. (in Chinese).
    [4] Zhao X L, Zhang L. State-of-the-art review on FRP strengthened steel structures [J]. Engineering Structures, 2007, 29(8): 1808―1823.
    [5] 谢建和, 黄培彦, 郭永昌, 刘锋. 预应力FRP加固RC梁界面疲劳裂纹扩展行为研究[J]. 工程力学, 2011, 28(7): 180―185. Xie Jianhe, Huang Peiyan, Guo Yongchang, Liu Feng. Study o propagation behavior of fatigue interface crack in RC beam strengthened with prestressed FRP [J]. Engineering Mechanics, 2011, 28(7): 180―185. (in Chinese)
    [6] 秦美君, 柳锦春, 赵启林, 刘鹏飞. 复合材料修复铝合金裂纹板的疲劳性能研究进展[J]. 工业建筑, 2013, 43(增刊1): 633―638. Qin Meijun, Liu Jinchun, Zhao Qilin, Liu Pengfei. Fatigue behavior of cracked aluminum plate repaired with composite patches [J]. Industrial Construction, 2013, 43(Suppl 1): 633―638. (in Chinese)
    [7] Seo D C, Lee J J. Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch [J]. Composite Structures, 2002, 57(1): 323―330.
    [8] Colombi P A, Bassetti A, Nussbaumer A. Analysis of cracked steel members reinforced by pre-stress composite patch [J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(1): 59―66.
    [9] 彭福明, 岳清瑞, 杨勇新, 张晓欣. FRP加固金属裂纹板的断裂力学分析[J]. 力学与实践, 2006, 28(3): 34―39. Peng Fuming, Yue Qingrui, Yang Yongxin, Zhang Xiaoxin. Fracture mechanics analysis of cracked metallic plates repaired with FRP [J]. Mechanics in Engineering, 2006, 28(3): 34―39. (in Chinese)
    [10] Liu H, Xiao Z G, Zhao X L, Al-Mahaidi R. Fracture mechanics analysis of cracked steel plates repaired with composite sheets [C]// Smith S T. Asia-Pacific Conference on FRP in Structures. Hong Kong: 2007 International Institute for FRP in Construction, 2007: 1047―1052.
    [11] 郑云, 叶列平, 岳清瑞. CFRP板加固含裂纹受拉钢板的疲劳性能研究[J]. 工程力学, 2007, 24(6): 91―97. Zheng Yun, Ye Lieping, Yue Qingrui. Study on fatigue behavior of cracked tensile steel plates reinforced with CFRP plates [J]. Engineering Mechanics, 2007, 24(6): 91―97. (in Chinese)
    [12] Täljsten, B, Hansen C S, Schmidt J W. Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates [J]. Construction and Building Materials, 2009, 23(4): 1665―1677.
    [13] 叶华文. 预应力碳纤维板(CFRP)加固钢板受拉静力及疲劳性能试验研究[D]. 成都: 西南交通大学, 2009: 53―58. Ye Huawen. Experimental study of static and fatigue behavior of tension steel plate strengthened with prestressed CFRP laminates [D]. Chengdu: Southwest Jiaotong University, 2009: 53―58. (in Chinese)
    [14] Yu Q Q, Chen T, Gu X L, et al. Fatigue behaviour of CFRP strengthened steel plates with different degrees of damage [J]. Thin-Walled Structures, 2013, 69(1): 10―17.
    [15] Broek D. Elementary Engineering Fracture Mechanics [M]. Netherlands: Martinus Nijhoff Publishers, 1984: 77―79.
    [16] Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook [M]. New York: ASME Press, 2000: 40―41.
    [17] Wu X R, Carlsson J. The generalised weight function method for crack problems with mixed boundary conditions [J]. Journal of the Mechanics and Physics of Solids, 1983, 31(6): 485―497.
    [18] 范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003: 80―84. Fan Tianyou. Elementary Fracture Mechanics [M]. Beijing: Science Press, 2003: 80―84. (in Chinese)
    [19] Paris P, Erdogan F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85(4): 528―533.
    [20] Elber W. The significance of fatigue crack closure [C]// ASTM International, Damage Tolerance in Aircraft Structures. Toronto: American Society for Testing and Materials, 1971: 230―242.
    [21] Newman J C Jr. A crack opening stress equation for fatigue crack growth [J]. International Journal of Fracture, 1984, 24(4): R131―R135.
    [22] Wang, C H. Fatigue crack growth analysis of repaired structures [M]// Baker A A, Rose L R F, Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structures. New York: Elsevier, 2002: 353―374.
计量
  • 文章访问数:  272
  • HTML全文浏览量:  17
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 刊出日期:  2015-03-24

目录

    /

    返回文章
    返回