基于有限元法的模糊参数二维声场数值分析

陈宁, 于德介, 吕辉, 夏百战

陈宁, 于德介, 吕辉, 夏百战. 基于有限元法的模糊参数二维声场数值分析[J]. 工程力学, 2014, 31(12): 200-207. DOI: 10.6052/j.issn.1000-4750.2013.06.0581
引用本文: 陈宁, 于德介, 吕辉, 夏百战. 基于有限元法的模糊参数二维声场数值分析[J]. 工程力学, 2014, 31(12): 200-207. DOI: 10.6052/j.issn.1000-4750.2013.06.0581
CHEN Ning, YU De-jie, LÜ Hui, XIA Bai-zhan. NUMERRICAL ANALYSIS OF 2D ACOUSTIC FIELD WITH FUZZY PARAMETERS BASED ON FINITE ELEMENT METHOD[J]. Engineering Mechanics, 2014, 31(12): 200-207. DOI: 10.6052/j.issn.1000-4750.2013.06.0581
Citation: CHEN Ning, YU De-jie, LÜ Hui, XIA Bai-zhan. NUMERRICAL ANALYSIS OF 2D ACOUSTIC FIELD WITH FUZZY PARAMETERS BASED ON FINITE ELEMENT METHOD[J]. Engineering Mechanics, 2014, 31(12): 200-207. DOI: 10.6052/j.issn.1000-4750.2013.06.0581

基于有限元法的模糊参数二维声场数值分析

基金项目: 湖南大学汽车车身先进设计制造国家重点实验室自主课题项目(60870002)
详细信息
    作者简介:

    陈宁(1989-), 男, 湖南人, 博士生, 从事汽车振动与噪声控制研究(E-mail:chenning@hnu.edu.cn); 吕辉(1986-), 男, 广西人, 博士生, 从事汽车振动与噪声控制研究(E-mail:lvhui588@126.com); 夏百战(1985-), 男, 湖南人, 博士生, 从事汽车振动与噪声控制研究(E-mail:xiabzff@126.com).

    通讯作者:

    于德介(1957-), 男, 湖南人, 教授, 博士, 博导, 从事汽车振动与噪声控制研究(E-mail:djyu@hnu.edu.cn).

  • 中图分类号: TB532

NUMERRICAL ANALYSIS OF 2D ACOUSTIC FIELD WITH FUZZY PARAMETERS BASED ON FINITE ELEMENT METHOD

  • 摘要: 为了分析不确定性二维声场,引入模糊集概念描述声场的物理参数、载荷和边界条件的不确定性,推导了分析模糊参数下二维声场问题的相关计算公式。在不同隶属度的截集下通过对模糊动刚度矩阵和模糊载荷矩阵进行泰勒展开,再用纽曼展开对模糊动刚度矩阵泰勒展开式的逆进行转化,采用摄动有限元法求解,最终得到模糊参数下的声压解集。以二维管道声场模型和某轿车二维声腔模型为研究对象分析了模糊参数下的声压响应,结果表明该文方法能有效分析模糊参数下的二维声场,具有重要的工程应用价值。
    Abstract: : In order to analyze a two-dimension acoustic field with uncertain parameters, a fuzzy concept was introduced to describe the uncertainties of physical parameters, applied loads as well as boundary conditions, and the correlated formulation about the analysis of the two-dimension acoustic field with fuzzy parameters were presented. The fuzzy dynamic stiffness matrix and fuzzy applied load matrix in different α-level cut were expanded by the first order Taylor series. The fuzzy dynamic stiffness matrix inverse was approximated by the first order Neumann series. Then, the sound pressure solution set can be obtained by using the perturbation finite element method. Numerical examples of the sound pressure response analysis of a 2D acoustic tube model and a 2D car acoustic cavity model with fuzzy parameters were presented, and the results showed that the method proposed can analyze a 2D acoustic field with fuzzy parameters accurately and effectively.
  • [1] 吴定俊, 李奇. 城市轨道交通槽型梁结构噪声计算与分析[J]. 工程力学, 2013, 30(2): 190―195. Han Jianglong, Wu Dingjun, Li Qi. Calculation and analysis of structure-borne noise from urban rail transit trough girders [J]. Engineering Mechanics, 2013, 30(2): 190―195. (in Chinese)
    [2] Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation [J]. Computers and Structures, 2000, 77(6): 651―657.
    [3] 王东升, 朱长春. 随机结构在随机载荷下的动力可靠度分析[J]. 工程力学, 2006, 23(10): 82―85.[3] Chen Ying, Wang Dongsheng, Zhu Changchun. Dynamic reliability analysis of stochastic structures subjected to random loads [J]. Engineering Mechanics, 2006, 23(10): 82―85. (in Chinese)
    [4] M. Statistically equivalent solutions of stochastic mechanics problems [J]. ASCE Journal of Engineering Mechanics, 1991, 117(8): 1906―1918.
    [5] L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338―353.
    [6] Hongzhong, Li Haibin. Perturbation finite element method of structural analysis under fuzzy environments [J]. Engineering Applications of Artificial Intelligence, 2005, 18: 83―91.
    [7] L, Moens D, Vandepitte D, Desmet W. Fuzzy finite element analysis based on reanalysis technique [J]. Structural Safety, 2010, 32: 442―448.
    [8] D, Vandepitte D. A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures:Part 1–Procedure [J]. Journal of Sound and Vibration, 2005, 288: 431―462.
    [9] Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain- but-non random parameters [J]. Chaos Soliton and Fractral, 1996, 7(3): 425―434.
    [10] K R, Dowling D R. A probability density function method for acoustic field uncertainty analysis [J]. Journal of the Acoustical Society of America, 2005, 118(5): 2802―2810.
    [11] K R, Dowling D R. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties [J]. Journal of the Acoustical Society of America, 2008, 124(3): 1465―1476.
    [12] K R, Dowling D R. Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L)a [J]. Journal of the Acoustical Society of America, 2011, 129(2): 589―592.
    [13] Y Y, Creamer D B, Finette S. Acoustic propagation in an uncertain waveguide environment using stochastic basis expansions [J]. Journal of Computational Acoustics, 2010, 18(4): 397―441.
    [14] J, Finette S. Stochastic basis expansions applied to acoustic propagation in an uncertain, range, and depth-dependent, multi-layered waveguide [J]. Journal of the Acoustical Society of America, 2011, 129(4): 2600.
    [15] S. A stochastic response surface formulation of acoustic propagation through an uncertain ocean waveguide environment [J]. Journal of the Acoustical Society of America, 2009, 126(5): 2242―2247.
    [16] Baizhan, Yu Dejie. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters [J]. Journal of Sound and Vibration, 2012, 331: 3774―3790
    [17] L F, Li Q S, Leung A Y T, Zhao Y L, Li G Q. Fuzzy variational principle and its applications [J]. European Journal of Mechanics A/Solids, 2002, 21: 999―1018.
    [18] F, Babuška I. Finite element solution of the Helmholtz equation with high wave number part І: The h-version of the FEM [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 38(9): 9―37.
计量
  • 文章访问数:  297
  • HTML全文浏览量:  22
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-26
  • 修回日期:  2014-01-08
  • 刊出日期:  2014-12-24

目录

    /

    返回文章
    返回