[1] |
吴定俊, 李奇. 城市轨道交通槽型梁结构噪声计算与分析[J]. 工程力学, 2013, 30(2): 190―195. Han Jianglong, Wu Dingjun, Li Qi. Calculation and analysis of structure-borne noise from urban rail transit trough girders [J]. Engineering Mechanics, 2013, 30(2): 190―195. (in Chinese)
|
[2] |
Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation [J]. Computers and Structures, 2000, 77(6): 651―657.
|
[3] |
王东升, 朱长春. 随机结构在随机载荷下的动力可靠度分析[J]. 工程力学, 2006, 23(10): 82―85.[3] Chen Ying, Wang Dongsheng, Zhu Changchun. Dynamic reliability analysis of stochastic structures subjected to random loads [J]. Engineering Mechanics, 2006, 23(10): 82―85. (in Chinese)
|
[4] |
M. Statistically equivalent solutions of stochastic mechanics problems [J]. ASCE Journal of Engineering Mechanics, 1991, 117(8): 1906―1918.
|
[5] |
L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338―353.
|
[6] |
Hongzhong, Li Haibin. Perturbation finite element method of structural analysis under fuzzy environments [J]. Engineering Applications of Artificial Intelligence, 2005, 18: 83―91.
|
[7] |
L, Moens D, Vandepitte D, Desmet W. Fuzzy finite element analysis based on reanalysis technique [J]. Structural Safety, 2010, 32: 442―448.
|
[8] |
D, Vandepitte D. A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures:Part 1–Procedure [J]. Journal of Sound and Vibration, 2005, 288: 431―462.
|
[9] |
Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain- but-non random parameters [J]. Chaos Soliton and Fractral, 1996, 7(3): 425―434.
|
[10] |
K R, Dowling D R. A probability density function method for acoustic field uncertainty analysis [J]. Journal of the Acoustical Society of America, 2005, 118(5): 2802―2810.
|
[11] |
K R, Dowling D R. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties [J]. Journal of the Acoustical Society of America, 2008, 124(3): 1465―1476.
|
[12] |
K R, Dowling D R. Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L)a [J]. Journal of the Acoustical Society of America, 2011, 129(2): 589―592.
|
[13] |
Y Y, Creamer D B, Finette S. Acoustic propagation in an uncertain waveguide environment using stochastic basis expansions [J]. Journal of Computational Acoustics, 2010, 18(4): 397―441.
|
[14] |
J, Finette S. Stochastic basis expansions applied to acoustic propagation in an uncertain, range, and depth-dependent, multi-layered waveguide [J]. Journal of the Acoustical Society of America, 2011, 129(4): 2600.
|
[15] |
S. A stochastic response surface formulation of acoustic propagation through an uncertain ocean waveguide environment [J]. Journal of the Acoustical Society of America, 2009, 126(5): 2242―2247.
|
[16] |
Baizhan, Yu Dejie. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters [J]. Journal of Sound and Vibration, 2012, 331: 3774―3790
|
[17] |
L F, Li Q S, Leung A Y T, Zhao Y L, Li G Q. Fuzzy variational principle and its applications [J]. European Journal of Mechanics A/Solids, 2002, 21: 999―1018.
|
[18] |
F, Babuška I. Finite element solution of the Helmholtz equation with high wave number part І: The h-version of the FEM [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 38(9): 9―37.
|