超低温环境下混凝土本构关系试验研究

李响, 谢剑, 吴洪海

李响, 谢剑, 吴洪海. 超低温环境下混凝土本构关系试验研究[J]. 工程力学, 2014, 31(增刊): 195-200. DOI: 10.6052/j.issn.1000-4750.2013.04.S008
引用本文: 李响, 谢剑, 吴洪海. 超低温环境下混凝土本构关系试验研究[J]. 工程力学, 2014, 31(增刊): 195-200. DOI: 10.6052/j.issn.1000-4750.2013.04.S008
LI Xiang, XIE Jian, WU Hong-hai. EXPERIMENTAL RESEARCH ON THE CONSTITUTIVE RELATIONSHIP OF CONCRETE IN A CRYOGENIC ENVIRONMENT[J]. Engineering Mechanics, 2014, 31(增刊): 195-200. DOI: 10.6052/j.issn.1000-4750.2013.04.S008
Citation: LI Xiang, XIE Jian, WU Hong-hai. EXPERIMENTAL RESEARCH ON THE CONSTITUTIVE RELATIONSHIP OF CONCRETE IN A CRYOGENIC ENVIRONMENT[J]. Engineering Mechanics, 2014, 31(增刊): 195-200. DOI: 10.6052/j.issn.1000-4750.2013.04.S008

超低温环境下混凝土本构关系试验研究

基金项目: 国家自然科学基金项目(51078260)
详细信息
    作者简介:

    李响(1989―),女,吉林人,硕士生,主要从事低温混凝土结构力学性能试验研究(E-mail:xianglee99@126.com);吴洪海(1986―),男,河北人,硕士生,主要从事超低温冻融循环对混凝土性能影响研究(E-mail:whhai1987@163.com).

    通讯作者:

    谢剑(1974―),男,河北人,副教授,博士,主要从事混凝土基本理论研究(E-mail:xiejian@tju.edu.cn).

EXPERIMENTAL RESEARCH ON THE CONSTITUTIVE RELATIONSHIP OF CONCRETE IN A CRYOGENIC ENVIRONMENT

  • 摘要: 针对超低温下混凝土本构关系进行试验研究,通过对试验数据整理分析,得出在20℃、0℃、-40℃、-80℃、-120℃、-160℃六个温度点下的应力-应变全曲线。该试验以抗压强度、弹性模量、峰值应变为主要测试指标。试验结果表明,试验温度越低,试件的破坏越迅速,测得的应力-应变全曲线下降段越短且越陡峭。随着温度降低,混凝土的峰值应变减小,脆性增大,强度与弹性模量均有所提高,且各自的提高程度与温度有关,全曲线的上升段与下降段可以用三次多项式与有理式分别拟合。
    Abstract: To develop a concrete constitutive relationship under cryogenic conditions, stress-strain curves were developed by sorting test data from the following temperature conditions: 20℃, 0℃, -40℃, -80℃, -120℃, -160℃. Compressive strength, elastic modulus, and peak strain were taken as key indicators in this test. The test shows that specimens are damaged more quickly at lower temperatures, and the descending branch of the curve is shorter than in normal conditions. Moreover, the lower the temperature, the shorter and the steeper the descending branch becomes. From the results, we can conclude that the concrete peak strain drops with decreased temperature, meaning the brittleness tends to increase. Both the compressive strength and elastic modulus increase, but the respective improvement of their performance has to do with the temperature. A third-order polynomial and a rational expression are proposed to describe the rising branch and descending branch, respectively.
  • [1] 王传星, 谢剑, 李会杰. 低温环境下混凝土性能的试验研究[J]. 工程力学, 2011, 28(增刊2): 182―186.
    Wang Chuanxing, Xie Jian, Li Huijie. Experimental research on the properties of concrete under low-temperature [J]. Engineering Mechanics, 2011, 28(Suppl 2): 182―186. (in Chinese)
    [2] Luis A Montejo, John E Sloan, Mervyn J Kowalsky. Cyclic response of reinforced concrete members at low temperatures [J]. Cold Regions Engineering, 2008, 22(3): 79―102.
    [3] 过镇海, 时旭东. 钢筋混凝土原理与分析[M]. 北京: 清华大学出版社, 2003: 20―24.
    Guo Zhenhai, Shi Xudong. Reinforced concrete theory and analysis [M]. Beijing: Tsinghua University Press, 2003: 20―24. (in Chinese)
    [4] 魏强, 谢剑, 吴洪海. 超低温冻融循环对混凝土材料性能的影响[J]. 工程力学, 2013, 30(增刊1): 125―131.
    Wei Qiang, Xie Jian, Wu Honghai. Experimental analysis on properties of concrete after freeze-thaw cycles under extra-low temperatures [J]. Engineering Mechanics, 2013, 30(Suppl 1): 125―131. (in Chinese)
    [5] Liu S, Gu X L, Huang Q H, Zhang W P. Experimental study on the bending behavior of reinforced concrete beams under super-low temperature [C]// 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments. Honolulu United States: American Society of Civil Engineers, 2010: 3537―3544.
    [6] Rostasy F S, Wiedemann G. Stress-strain behaviour of concrete at extremely low temperature [J]. Cement and Concrete Research, 1980, 10(4): 565―572.
    [7] Lahlou Dahmani, Amar Khenane, Salah Kaci. Behavior of the reinforced concrete at cryogenic temperatures [J]. Cryogenics, 2007, 47(9): 517―525.
    [8] Khayat K H, Polivka M. Cryogenic frost resistance of lightweight concrete containing silica fume [J]. Trondheim Conference, 1989, 114(45): 915―928.
    [9] Takashi Miura. The properties of concrete at very low temperatures [J]. Materials and Structures, 1989, 22(4): 243―254.
    [10] Susanta Chatterji. Aspects of freezing process in porous material-water system Part-2. Freezing and properties of frozen porous materials [J]. Cement and Concrete Research, 1999, 29(5): 781―784.
    [11] 蒋正武, 张楠, 李雄鹰, 等. 国外超低温下混凝土性能的研究进展评述[J]. 材料导报A: 综述篇, 2011, 25(7): 1―4.
    Jiang Zhengwu, Zhang Nan, Li Xiongying, et al. State-of-art review on properties of concrete at cryogenic temperature overseas [J]. Materials Review A: Review, 2007, 25(7): 1―4. (in Chinese)
    [12] 过镇海. 混凝土的强度与变形—试验基础与本构关系[M]. 北京: 清华大学出版社, 1997: 31―35.
    Guo Zhenhai. The strength and deformation test of concrete—experimental basis and the constitutive relation [M]. Beijing: Tsinghua University Press, 1997: 31―35. (in Chinese)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  49
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-31
  • 修回日期:  2013-11-26
  • 刊出日期:  2014-06-24

目录

    /

    返回文章
    返回