基于转动刚体模型筋混凝土挡块抗震强度预测

徐略勤, 李建中

徐略勤, 李建中. 基于转动刚体模型筋混凝土挡块抗震强度预测[J]. 工程力学, 2014, 31(10): 143-150. DOI: 10.6052/j.issn.1000-4750.2013.04.0381
引用本文: 徐略勤, 李建中. 基于转动刚体模型筋混凝土挡块抗震强度预测[J]. 工程力学, 2014, 31(10): 143-150. DOI: 10.6052/j.issn.1000-4750.2013.04.0381
XU Lue-qin, LI Jian-zhong. SEISMIC STRENGTH PREDICTION OF REINFORCED CONCRETE RETAINERS BASED ON RIGID BODY ROTATION MODEL[J]. Engineering Mechanics, 2014, 31(10): 143-150. DOI: 10.6052/j.issn.1000-4750.2013.04.0381
Citation: XU Lue-qin, LI Jian-zhong. SEISMIC STRENGTH PREDICTION OF REINFORCED CONCRETE RETAINERS BASED ON RIGID BODY ROTATION MODEL[J]. Engineering Mechanics, 2014, 31(10): 143-150. DOI: 10.6052/j.issn.1000-4750.2013.04.0381

基于转动刚体模型筋混凝土挡块抗震强度预测

基金项目: 交通运输部西部交通建设科技项目(200831800098); 国家973计划研究专项课题项目(2012CB723305); 交通运输部应用基础研究项目; (2014319814210)
详细信息
    作者简介:

    李建中(1963-),男,湖北人,教授,博士,博导,副院长,长期从事桥梁抗震研究(E-mail:lijianzh@tongji.edu.cn).

    通讯作者:

    徐略勤(1983-),男,江西人,讲师,博士,主要从事桥梁抗震理论与设计研究(E-mail:xulueqin@163.com).

  • 中图分类号: U442.5+5

SEISMIC STRENGTH PREDICTION OF REINFORCED CONCRETE RETAINERS BASED ON RIGID BODY ROTATION MODEL

  • 摘要: 在拟静力试验基础上,根据挡块的破坏现象、钢筋的应变分布规律、以及挡块的力-变形关系曲线识别了挡块的两种典型破坏形态,即斜截面剪切破坏和连接面剪切破坏。引入转动刚体的假设模拟挡块的破坏机制,提出混凝土和钢筋强度贡献的两个独立分项,分别建立了两种破坏形态下挡块的抗震强度预测模型。两个模型本质上一致,但受力模式有别。斜截面转动刚体模型中挡块的强度主要来自混凝土、剪切钢筋、水平拉筋和水平构造筋的贡献;而连接面转动刚体模型主要来自混凝土和剪切钢筋。两个模型不仅可体现挡块尺寸、材料特性、钢筋数量等基本参数的影响,也可反映加载位置、钢筋位置等因素的作用。误差分析表明两个模型计算结果精确、可靠,可为挡块的抗震设计计算提供参考。
    Abstract: Based on the damage phenomena, steel strain distribution, and force-deformation relationships observed during quasi-static experiments on reinforced concrete retainers, two typical failure patterns are identified; diagonal shear failure and horizontal shear failure. The rigid body rotation hypothesis is introduced to model the failure mechanism of the retainers, and dual independent strength contribution terms are suggested to represent the contributions from concrete and reinforcements. Two strength analytical models are established corresponding to the aforementioned two failure patterns. The two models are essentially the same but with distinct force diagrams. In the diagonal rigid body rotation model, the retainer strength comes from concrete, shear steel, horizontal tension steel, and horizontal side steel, whereas in the horizontal rigid body rotation model, the retainer strength comes from concrete and shear steel. In both models, basic parameters such as retainer size, material properties, and reinforcement amount are formulated, and the effects of loading position and reinforcement location are also taken into consideration. Error analysis shows that the two models give accurate and reliable predictions, which can provide practical reference for seismic design of retainers.
  • [1] 刘健新, 赵国辉. “5·12”汶川地震典型桥梁震害分析[J]. 建筑科学与工程学报, 2009, 26(2): 92-97. Liu Jianxin, Zhao Guohui. Typical bridge damage analysis in “5·12” Wenchuan earthquake [J]. Journal of Architecture and Civil Engineering, 2009, 26(2): 92-97. (in Chinese)
    [2] 王克海, 李茜, 韦韩. 汶川地震对我国地震区划图与桥梁抗震设计的启示[J]. 工程力学, 2010, 27(6): 120-126. Wang Kehai, Li Qian, Wei Han. Enlightenment in bridge seismic design seismic zonation from Wenchuan earthquake [J]. Engineering Mechanics, 2010, 27(6): 120-126. (in Chinese)
    [3] 庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7): 1377-1387. Zhuang Weilin, Liu Zhenyu, Jiang Jinsong. Earthquake- induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1377-1387. (in Chinese)
    [4] 徐略勤, 李建中, 吴陶晶. 碰撞效应对非规则梁桥横向地震反应的影响[J]. 振动与冲击, 2011, 30(4): 95-99, 123. Xu Lueqin, Li Jianzhong, Wu Taojing. Influence of pounding effects on transverse seismic response of a nonstandard girder bridge [J]. Journal of Vibration and Shock, 2011, 30(4): 95-99, 123. (in Chinese)
    [5] 徐略勤, 李建中. 挡块对规则连续梁桥横向地震反应的影响[J]. 公路交通科技, 2013, 30(4): 53-59. Xu Lueqin, Li Jianzhong. Effect of retainers on transverse seismic response of a standard continuous girder bridge [J]. Journal of Highway and Transportation Research and Development, 2013, 30(4): 53-59. (in Chinese)
    [6] Caltrans. SDC Caltrans Seismic Deisgn Criteria version 1.4 [S]. California Department of Transportation, Sacramento, California, 2006.
    [7] Imbsen R A. Proposed AASHTO guide specifications for LRFD seismic bridge design [R]. Sacrameno: Imbsen Consulting, 2007.
    [8] Megally S H, Sliva P F , Seible F. Seismic response of sacrificial shear keys in bridge abutments [R]. La Jolla: University of California, San Diego, 2001.
    [9] Bozorgzadeh A, Megally S H, Restrepo J I, Ashford S A. Seismic response and capacity evaluation of exterior sacrificial shear keys in bridge abutments [R]. La Jolla: University of California, San Diego, 2004.
    [10] GB-T 50081-2002, 普通混凝土力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2003. GB-T 50081-2002, Standard for test method of mechanical properties on ordinary concrete [S]. Beijing: China Architecture and Building Press, 2003. (in Chinese)
    [11] GB-T 228-2002, 金属材料室温拉伸试验方法[S]. 北京: 中国标准出版社, 2002. GB-T 228-2002, Metallic materials- tensile testing at ambient temperature [S]. Beijing: China Standard Press, 2002. (in Chinese)
    [12] Priestley M J N, Seible F, Uang C M. The Northridge earthquake of January 17, 1994: Damage analysis of selected freeway bridges [R]. La Jolla: University of California, San Diego, 1994.
计量
  • 文章访问数:  298
  • HTML全文浏览量:  26
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-27
  • 修回日期:  2013-11-26
  • 刊出日期:  2014-10-24

目录

    /

    返回文章
    返回