变增量扫频法求解结构随机风振响应

张志田, 谢先浩

张志田, 谢先浩. 变增量扫频法求解结构随机风振响应[J]. 工程力学, 2014, 31(8): 101-107. DOI: 10.6052/j.issn.1000-4750.2013.01.0137
引用本文: 张志田, 谢先浩. 变增量扫频法求解结构随机风振响应[J]. 工程力学, 2014, 31(8): 101-107. DOI: 10.6052/j.issn.1000-4750.2013.01.0137
ZHANG Zhi-tian, XIE Xian-hao. WIND-INDUCED STOCHASTIC BUFFETING RESPONSES OF BRIDGES BASED ON A VARYING FREQUENCY-INCREMENT SWEEPING METHOD[J]. Engineering Mechanics, 2014, 31(8): 101-107. DOI: 10.6052/j.issn.1000-4750.2013.01.0137
Citation: ZHANG Zhi-tian, XIE Xian-hao. WIND-INDUCED STOCHASTIC BUFFETING RESPONSES OF BRIDGES BASED ON A VARYING FREQUENCY-INCREMENT SWEEPING METHOD[J]. Engineering Mechanics, 2014, 31(8): 101-107. DOI: 10.6052/j.issn.1000-4750.2013.01.0137

变增量扫频法求解结构随机风振响应

基金项目: 国家自然科学基金项目(51178182); 湖南省高校创新平台开放基金项目
详细信息
    作者简介:

    谢先浩(1989―),男,湖北人,硕士生,从事桥梁工程研究(E-mail: 545680829@qq.com).

    通讯作者:

    张志田(1974―),男,湖南人,副教授,博士,从事结构风工程研究(E-mail: zhangzhitian@hnu.edu.cn);

WIND-INDUCED STOCHASTIC BUFFETING RESPONSES OF BRIDGES BASED ON A VARYING FREQUENCY-INCREMENT SWEEPING METHOD

  • 摘要: 结构耦合抖振响应有限元分析的完全二次组合(CQC)频域方法在数值积分过程中,一般都采用等增量扫频。大型结构的实际频响函数一般只有在共振频率附近才有较大的数值,而在其他远离共振频率点的区域频响函数值都很小。基于此,该文提出结构抖振响应变增量扫频的频域分析法。采用基于完全二次组合的CQC法编制结构抖振响应变增量扫频计算程序,该程序在做数值积分的时候采用变增量扫频的方式,在结构共振频率点附近自动加密计算点,而在其他的频率区则间采用较大的增量步长。以某大桥为例,对等增量扫频法和变增量扫频法得到的结果进行比较,证实了变增量扫频法在保证求解精度的前提下能大大的缩短求解的时间,提高效率。
    Abstract: The fixed frequency increment sweeping method is usually employed in buffeting response analysis when using the complete quadratic combination (CQC) finite element method. Generally, the actual frequency response functions of large structures possess a relatively large value when the frequency is adjacent to a resonant value. Based on this fact, a varying frequency-increment sweeping method is proposed in this study. The CQC method is employed in the buffeting response program. A varying frequency-increment strategy is used in the program in regard to numerical integration. Within the range of resonance frequencies the number of integral points increases automatically while larger frequency increments are employed in ranges far away from resonant points. Both the fixed and the varying frequency-increment sweeping methods have been employed in the analysis of buffeting response for one bridge. The results indicate that the varying frequency-increment sweeping method is less time-consuming and numerically more efficient than its fixed counterpart for the same accuracy requirements.
  • [1] H. On the application of statistical concepts to the buffeting problem [J]. Journal of the Aeronautical Sciences, 1952, 19(12): 793―800.
    [2] A G. Buffeting of a suspension bridge by storm winds [J]. Journal of Structural Engineering Division, ASCE, 1962, 88(3): 233―268.
    [3] A G. The application of statistical concepts to the wind loading of structures [C]. Proceedings- Institution of Civil Engineers, 1961, 19(4): 449―472.
    [4] R H, Gade R H. Motion of suspended bridge spans under gusty wind [J]. Journal of Structural Engineering Division, ASCE, 1977, 103(9): 1867―1883.
    [5] R H, Jones N P. Aeroelastic analysis of cable-stayed bridges [J]. Journal of Structural Engineering, ASCE, 1990, 116(2): 279―297.
    [6] R H. The action of flexible bridges under wind, I: Flutter theory [J]. Journal of Sound and Vibration, 1978, 60(2): 187―199.
    [7] M, Chen X, Shiraishi N. Buffeting analysis of long span bridge with aerodynamic coupling [C]// Proceedings of the 13th National Symposium on Wind Engineering, Japanese: Japan Association for Wind Engineering, 1994: 227―232.
    [8] X, Matsumoto M, Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges [J]. J Engrg Mech ASCE, 2000, 126(1): 17―26.
    [9] 陈艾荣, 项海帆. 大跨度桥梁结构耦合抖振响应频域分析[J]. 土木工程学报, 2003, 36(4): 86―93. Ding Quanshun, Chen Airong, Xiang Haifan. Response of coupled buffeting to long-span bridges in frequency- domain [J]. China Civil Engineering Journal, 2003, 36(4): 86―93. (in Chinese)
    [10] A, Jones N P, Scanlan R H. Coupled flutter and buffeting analysis of long-span bridges [J]. J Struct Engrg, ASCE, 1996, 122(7): 716―725.
    [11] 葛耀君, 陈政清. 基于气动新模型的大跨度桥梁频域抖振分析[J]. 工程力学, 2006, 23(6): 94―101. Zhang Zhitian, Ge Yaojun, Chen Zhengqing. A new aerodynamic method for long-span bridge buffeting analysis [J]. Engineering Mechanics, 2006, 23(6): 94―101. (in Chinese)
    [12] E, Scanlan R H. Wind effects on structures: an introduction to wind engineering [M]. New York: Wiley, 1996.
    [13] 崔斗星. 天文动力学方程数值积分中的一种有效变步法[J]. 天文学报, 2002, 43(4): 387―390. Liu Chengzhi, Cui Douxing. An efficient step-size control method in numerical integration for astrodyna-mical equations [J]. Acta Astronomica Sinica, 2002, 43(4): 387―390. (in Chinese)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  16
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-24
  • 修回日期:  2013-11-03
  • 刊出日期:  2014-08-24

目录

    /

    返回文章
    返回