基于多边形比例边界有限元的 复合材料裂纹扩展模拟

施明光, 徐艳杰, 钟红, 张楚汉

施明光, 徐艳杰, 钟红, 张楚汉. 基于多边形比例边界有限元的 复合材料裂纹扩展模拟[J]. 工程力学, 2014, 31(7): 1-7. DOI: 10.6052/j.issn.1000-4750.2013.01.0027
引用本文: 施明光, 徐艳杰, 钟红, 张楚汉. 基于多边形比例边界有限元的 复合材料裂纹扩展模拟[J]. 工程力学, 2014, 31(7): 1-7. DOI: 10.6052/j.issn.1000-4750.2013.01.0027
SHI Ming-guang, XU Yan-jie, ZHONG Hong, Ooi Ean Tat. MODELLING OF CRACK PROPAGATION FOR COMPOSITE MATERIALS BASED ON POLYGON SCALED BOUNDARY FINITE ELEMENTS[J]. Engineering Mechanics, 2014, 31(7): 1-7. DOI: 10.6052/j.issn.1000-4750.2013.01.0027
Citation: SHI Ming-guang, XU Yan-jie, ZHONG Hong, Ooi Ean Tat. MODELLING OF CRACK PROPAGATION FOR COMPOSITE MATERIALS BASED ON POLYGON SCALED BOUNDARY FINITE ELEMENTS[J]. Engineering Mechanics, 2014, 31(7): 1-7. DOI: 10.6052/j.issn.1000-4750.2013.01.0027

基于多边形比例边界有限元的 复合材料裂纹扩展模拟

基金项目: 国家自然科学基金项目(40974063,41274106,51009019),水沙科学与水利水电工程国家重点实验室科研课题项目(2011-KY-3)
详细信息
    作者简介:

    施明光(1984―),男,福建福州人,博士生,从事断裂力学研究(E-mail:smg07@mails.tsinghua.edu.cn);钟红(1981―),女,湖南湘乡人,讲师,博士,从事混凝土结构静动力分析研究(E-mail:hzhong@dlut.edu.cn);EanTatOoi(1979―),男,马来西亚人,高级讲师,博士后,从事数值模拟和断裂力学研究(E-mail:e.ooi@unsw.edu.au);张楚汉(1933―),男,广东梅州人,教授,硕士,中科院院士,从事水利工程研究(E-mail:zch-dhh@tsinghua.edu.cn).

    通讯作者:

    徐艳杰(1970―),女(满),辽宁义县人,副教授,博士,从事水工结构研究(E-mail:xuyanjie@tsinghua.edu.cn).

MODELLING OF CRACK PROPAGATION FOR COMPOSITE MATERIALS BASED ON POLYGON SCALED BOUNDARY FINITE ELEMENTS

  • 摘要: 该文采用近年提出的多边形比例边界有限元(Polygon Scaled Boundary Finite Elements, PSBFE),结合基于拓扑的局部网格重剖分方法,首次模拟了层状复合材料交界面、不同弹性模量的圆形夹杂对复合材料裂纹扩展的影响。结果表明,该文方法可以有效模拟复合材料的裂纹扩展,算例的结果同现有文献的实验数据和数值模拟结果吻合良好,采用不同网格密度和不同裂纹扩展步长对计算结果影响不大。基于SBFEM的PSBFE可以半解析求解裂纹尖端应力奇异性,具有比FEM更高的精度。另一方面,同现有基于SBFEM的裂纹扩展方法相比,基于拓扑的局部网格重剖分的PSBFE可以处理任意复杂的二维模型,具有更好的通用性。
    Abstract: The newly developed Polygon Scaled Boundary Finite Elements (PSBFE) combining with topography-based local remeshing technique is, for the first time, applied to the fracture analysis of composite materials. Near-interfacial crack propagation in a layered metal-ceramic structure is simulated and the effects of elastic constants mismatch on the interaction between a propagating crack and a single inclusion in brittle matrix materials are presented. The agreement between the simulating result, experimental and other numerical data available in literatures demonstrates a good validity and accuracy of the proposed method in predicting the crack-growth of composite material. The parametric study on the effect of mesh density and effect of different increments of crack propagation leads to the consistent results. This technique can represent the singular stress field at a crack tip more precisely than FEM. Meanwhile, it is more robust and universal than current crack growth simulation methods based on SBFEM.
  • [1] 徐芳, 陈振中. A357铸造铝合金疲劳裂纹扩展行为以及裂纹偏折[J]. 工程力学, 2011, 28(10): 197―201, 242.
    Xu Fang, Chen Zhenzhong. The fatigue crack propagation behavior and crack deflection of A357 casting aluminum alloys [J]. Engineering Mechanics, 2011, 28(10): 197―201, 242. (in Chinese)
    [2] Jajam K C, Tippur H V. An experimental investigation of dynamic crack growth past a stiff inclusion [J]. Engineering Fracture Mechanics, 2011, 78(6): 1289―1305.
    [3] Tamate O. The effect of a circular inclusion on the stresses around a line crack in a sheet under tension [J]. International Journal of Fracture, 1968, 4(3): 257―266.
    [4] 侯密山, 徐国强, 胡玉林. 反平面电弹性偏折裂纹的一个解析解[J]. 工程力学, 2013, 30(9): 76―80.
    Hou Mishan, Xu Guoqiang, Hu Yulin. An analytical solution for problem of antiplane kink cracks in piezoelectric material [J]. Engineering Mechanics, 2013, 30(9): 76―80. (in Chinese)
    [5] 蔡永昌, 朱合华. 裂纹扩展过程模拟的无网格MSLS方法[J]. 工程力学, 2010, 27(7): 21―26.
    Cai Yongchang, Zhu Hehua. Simulation of crack growth by the MSLS method [J]. Engineering Mechanics, 2010, 27(7): 21―26. (in Chinese)
    [6] 茹忠亮, 朱传锐, 赵洪波. 裂纹扩展问题的改进XFEM算法[J]. 工程力学, 2013, 29(7): 12―16, 23.
    Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. An improved algorithm of XFEM for the crack propagation problems. Engineering Mechanics, 2013, 29(7): 12―16, 23. (in Chinese)
    [7] Bäker M. Finite element crack propagation calculation using trial cracks [J]. Computational Materials Science, 2008, 43(1): 179―183.
    [8] Lei J, Yang Q S, Wang Y S, et al. An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM [J]. Composites Science and Technology, 2009, 69(7): 1279―1285.
    [9] Tran A B, Yvonnet J, He Q C, et al. A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM [J]. International Journal for Numerical Methods in Engineering, 2011, 85(11): 1436―1459.
    [10] Wolf J P, Song C. Dynamic‐stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method [J]. Earthquake Engineering & Structural Dynamics, 1994, 23(11): 1181―1198.
    [11] Deeks A J, Augarde C E. A meshless local Petrov-Galerkin scaled boundary method [J]. Computational Mechanics, 2005, 36(3): 159―170.
    [12] Song C M, Wolf J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method [J]. Computers & Structures, 2002, 80(2): 183―197.
    [13] Chidgzey S R, Deeks A J. Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2005, 72(13): 2019―2036.
    [14] Yang Z J, Deeks A J, Hao H. Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach [J]. Engineering Fracture Mechanics, 2007, 74(5): 669―687.
    [15] Song C, Tin-Loi F, Gao W. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges [J]. Engineering Fracture Mechanics, 2010, 77(12): 2316―2336.
    [16] Ooi E T, Song C M, Tin-Loi F, et al. Polygon scaled boundary finite elements for crack propagation modeling [J]. International Journal for Numerical Methods in Engineering, 2012, 91(3): 319―342.
    [17] Ooi E T, Song C M, Tin-Loi F, et al. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements [J]. Engineering Fracture Mechanics, 2012, 93: 13―33.
    [18] Song C M, Wolf J P. Body loads in scaled boundary finite-element method [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1/2): 117―135.
    [19] Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2006, 73(12): 1711―1731.
    [20] Erdogan F. Critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85(4): 528―534.
    [21] McNaney J M, Cannon R M, Ritchie R O. Near-interfacial crack trajectories in metal-ceramic layered structures [J]. International Journal of Fracture, 1994, 66(3): 227―240.
    [22] Yan Y, Park S H. An extended finite element method for modeling near-interfacial crack propagation in a layered structure [J]. International Journal of Solids and Structures, 2008, 45(17): 4756―4765.
    [23] Yang L, Chen Q, Li Z. Crack-inclusion interaction for mode II crack analyzed by Eshelby equivalent inclusion method [J]. Engineering Fracture Mechanics, 2004, 71(9): 1421―1433.
    [24] Williams R C, Phan A V, Tippur H V, et al. SGBEM analysis of crack-particle(s) interactions due to elastic constants mismatch [J]. Engineering Fracture Mechanics, 2007, 74(3): 314―331.
计量
  • 文章访问数:  395
  • HTML全文浏览量:  30
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-10
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-07-24

目录

    /

    返回文章
    返回