调谐型颗粒阻尼器简化力学模型及其参数计算方法研究与减震桥梁试验

闫维明, 许维炳, 王瑾, 陈彦江

闫维明, 许维炳, 王瑾, 陈彦江. 调谐型颗粒阻尼器简化力学模型及其参数计算方法研究与减震桥梁试验[J]. 工程力学, 2014, 31(6): 79-84. DOI: 10.6052/j.issn.1000-4750.2012.11.0910
引用本文: 闫维明, 许维炳, 王瑾, 陈彦江. 调谐型颗粒阻尼器简化力学模型及其参数计算方法研究与减震桥梁试验[J]. 工程力学, 2014, 31(6): 79-84. DOI: 10.6052/j.issn.1000-4750.2012.11.0910
YAN Wei-ming, XU Wei-bing, WANG Jin, CHEN Yan-jiang. EXPERIMENTAL AND THEORETICAL RESEARCH ON THE SIMPLIFIED MECHANICAL MODEL OF A TUNED PARTICLE DAMPER, ITS PARAMETER DETERMINATION METHOD AND EARTHQUAKE-INDUCED VIBRATION CONTROL OF BRIDGE[J]. Engineering Mechanics, 2014, 31(6): 79-84. DOI: 10.6052/j.issn.1000-4750.2012.11.0910
Citation: YAN Wei-ming, XU Wei-bing, WANG Jin, CHEN Yan-jiang. EXPERIMENTAL AND THEORETICAL RESEARCH ON THE SIMPLIFIED MECHANICAL MODEL OF A TUNED PARTICLE DAMPER, ITS PARAMETER DETERMINATION METHOD AND EARTHQUAKE-INDUCED VIBRATION CONTROL OF BRIDGE[J]. Engineering Mechanics, 2014, 31(6): 79-84. DOI: 10.6052/j.issn.1000-4750.2012.11.0910

调谐型颗粒阻尼器简化力学模型及其参数计算方法研究与减震桥梁试验

基金项目: 国家自然科学基金项目(91315301-03, 51378039, 51378037)
详细信息
    作者简介:

    闫维明(1960―), 男, 黑龙江人, 研究员, 教授, 博士, 副院长, 主要从事土木工程结构抗震减震的研究(E-mail: yanwm@bjut.edu.cn);王瑾(1987―), 男, 河北人, 博士生, 主要从事建筑结构减震控制研究(E-mail: wangjin418@qq.com);陈彦江(1963―), 男, 黑龙江人, 教授, 博士, 主要从事桥梁抗震减震、桥梁稳定与振动等方面的研究(E-mail: cyjrlx@sina.com).

    通讯作者:

    许维炳(1986―), 男, 安徽人, 博士生, 主要从事桥梁结构抗震减震研究(E-mail: xuwb@emails.bjut.edu.cn)

  • 中图分类号: TU317+.1; TU352.1

EXPERIMENTAL AND THEORETICAL RESEARCH ON THE SIMPLIFIED MECHANICAL MODEL OF A TUNED PARTICLE DAMPER, ITS PARAMETER DETERMINATION METHOD AND EARTHQUAKE-INDUCED VIBRATION CONTROL OF BRIDGE

  • 摘要: 介绍了调谐型颗粒阻尼器, 进行了基于该阻尼器减震高架连续梁桥缩尺模型的振动台试验;建立了该阻尼器的数值分析简化力学模型, 提出了该模型等效阻尼比的能量估算方法, 并对该阻尼器的减震控制效果进行了有限元数值模拟. 试验与数值模拟结果表明:调谐型颗粒阻尼器可以有效降低高架连续梁桥的地震响应;上述简化力学模型和参数估算方法可以有效模拟调谐型颗粒阻尼器的减震控制效果, 可为基于颗粒阻尼器的土木工程结构减震设计参考.
    Abstract: This paper presents an experimental research on a tuned particle damper attached to a scaled continuous viaduct. A simplified mechanical model for the damper used in finite element method was established to simulate the controlling effects of the damper. An analytical energy method was established to estimate the equivalent additional damping ratio of the damper. The experimental and computational results show that tuned particle dampers can effectively reduce the seismic response of the model bridge. The simplified mechanical model and the analytical energy method are effective in simulating the controlling effects of the tuned particle damper. The simplified mechanical model and the analytical energy method provide certain theoretical guidance for the application of particle damping in civil engineering.
  • [1] Xu Zhiwei. A particle damper for vibration and noise reduction[J]. Journal of Sound and Vibration, 2002, 270(4/5): 1033―1040.
    [2] Bai Xianming. Particle dynamics simulations of a piston-based particle damper[J]. Powder Technology, 2008, 189(1): 115―125.
    [3] Li Kuinian, Darby A P. A buffered impact damper for multi-degree-of-freedom structural control[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(13): 1491―1510.
    [4] Masri S F. Analytical and experimental studies of multi-unit impact dampers[J]. Journal of the Acoustical Society of America, 1968, 45(5): 1111―1117.
    [5] Lu Zheng, Masri S F, Lu Xilin. Parametric studies of the performance of particle dampers under harmonic excitation[J]. Structural Control and Health Monitoring, 2010, 17(6): 31―53.
    [6] Lu Zheng, Lu Xilin, Masri S F. Studies of the performance of particle dampers under dynamic loads[J]. Journal of Sound and Vibration, 2010, 329(26): 5415―5433.
    [7] Lu Zheng, Lu Xilin, Lu Wensheng, Masri S F. Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads[J]. Journal of Sound and Vibration, 2012, 331(9): 2007―2022.
    [8] 闫维明, 黄韵文, 何浩祥, 等. 颗粒阻尼技术及其在土木工程中的应用展望[J]. 世界地震工程, 2010, 26(4): 65―71. Yan Weiming, Huang Yunwen, He Haoxiang, et al. Particle damping technology and its application prospect in civil engineering[J]. World Earthquake Engineering, 2010, 26(4): 65―71. (in Chinese)
    [9] 王瑾. 建筑结构颗粒阻尼减振机理与性能研究[D]. 北京: 北京工业大学, 2012. Wang Jin. Research on performance and mechanism of particle damping for vibration control of building structures[D]. Beijing: Beijing University of Technology, 2012. (in Chinese)
    [10] Cundall P A. A computer model for simulating progressive, large scale movements in blocky rock systems[J]. Proceedings of International Symposium Rock Fracture, ISRM, Nancy, 1971, 1: 2―8.
    [11] Cundall P A, Strack O D L. A discrete numerical model for granular assemble[J]. Geotechnique, 1979, 29(1): 47―65.
    [12] Cundall P A. Formulation of a three-dimensional distinct element model—Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. Intemational Journal of Rock Mechanics and Mining Science & Geomechanics Abstract, 1988, 25(3): 107―116.
    [13] Hart R, Cundall P A, Lemos J. Formulation of a three dimensional discrete element model—Part II: Mechanical calculation for motion and interaction of a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstract, 1988, 25(3): 117―125.
    [14] 金伟良, 方韬. 钢筋混凝土框架结构破坏性能的离散单元法模拟[J]. 工程力学, 2005, 22(4): 67―73. Jin Weiliang, Fang Tao. Numerical simulation of failure behavior of reinforced concrete frame structures by discrete element method[J]. Engineering Mechanics, 2005, 22(4): 67―73. (in Chinese)
    [15] Tavarez F A. Discrete element method for modeling solid and particulate materials[J]. International Journal for Numerical Methods in Engineering, 2007, 70(4): 379―404.
    [16] ATC-40-1996, Seismic evaluation and retrofit of concrete buildings[S]. 1996.
    [17] GB50011-2010, 建筑抗震设计规范[S]. 2010. GB50011-2010, Code for seismic design of buildings[S]. 2010. (in Chinese)
    [18] Juang J N. Applied system identification[M]. Englewood Cliffs, N J, Prentice-Hall: 280―341.
    [19] Kijewski T, Kareem A. Analysis of full-scale data from a tall building in Boston: Damping estimates[J]. Proc. 10th ICWE, 1999, 1: 679―684.
    [20] 王天稳. 土木工程结构试验[M]. 武汉: 武汉理工大学出版社, 2006: 16―26. Wang Tianwen. Structural testing of civil engineering[M]. Wuhan: Wuhan University of Technology Press, 2006: 16―26. (in Chinese)
    [21] Soong T T, Dargush G F. Passive energy dissipation systems in structural engineering[M]. Wiley & Sons, Incorporated, John, 1997.
    [22] JTG/T B02-01—2008, 公路桥梁抗震设计细则[S]. 2008. JTG/T B02-01—2008, Guidelines for seismic design of highway bridges[S]. 2008. (in Chinese)
    [23] Wu Chuanyu, Li Longyuan. Energy dissipation during normal impact of elastic and elastic-plastic spheres[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 593―604.
    [24] Lee Sanghyun, Min Kyungwon. Evaluation of equivalent damping ratio of a structure with added dampers[J]. Engineering Structures, 2004, 26(3): 335―346.
    [25] Comartin C D, Niewiarowski R W, Rojahn C. Seismic evaluation and retrofit of concrete buildings[M]. California: Applied Technology Council, California Seismic Safety Commission, 1996: 148―181.
    [26] Shukla A K, Datta T K. Optimal use of viscoelastic dampers in building frames for seismic force[J]. Journal of Structural Engineering, 1999, 125(4): 401―409.
计量
  • 文章访问数:  329
  • HTML全文浏览量:  35
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2013-05-28
  • 刊出日期:  2014-06-24

目录

    /

    返回文章
    返回