混凝土硬化过程中的应力-应变发展和基于内部湿度的开裂风险预估

魏亚, 高翔

魏亚, 高翔. 混凝土硬化过程中的应力-应变发展和基于内部湿度的开裂风险预估[J]. 工程力学, 2014, 31(3): 138-143. DOI: 10.6052/j.issn.1000-4750.2012.10.0749
引用本文: 魏亚, 高翔. 混凝土硬化过程中的应力-应变发展和基于内部湿度的开裂风险预估[J]. 工程力学, 2014, 31(3): 138-143. DOI: 10.6052/j.issn.1000-4750.2012.10.0749
WEI Ya, GAO Xiang. STRESS-STRAIN DEVELOPMENT AND PREDICTION OF CRACKING POTENTIAL BASED ON HUMIDITY DROP RATE OF HARDENING CONCRETE[J]. Engineering Mechanics, 2014, 31(3): 138-143. DOI: 10.6052/j.issn.1000-4750.2012.10.0749
Citation: WEI Ya, GAO Xiang. STRESS-STRAIN DEVELOPMENT AND PREDICTION OF CRACKING POTENTIAL BASED ON HUMIDITY DROP RATE OF HARDENING CONCRETE[J]. Engineering Mechanics, 2014, 31(3): 138-143. DOI: 10.6052/j.issn.1000-4750.2012.10.0749

混凝土硬化过程中的应力-应变发展和基于内部湿度的开裂风险预估

基金项目: 国家自然科学基金项目(51108246); 教育部博士点新教师基金项目(20110002120010); 交通运输部西部交通科技项目(2011318223710)
详细信息
    作者简介:

    高翔(1988―), 男, 山西人, 硕士生, 从事结构材料及道路工程研究(E-mail: gaoxiang0601@gmail.com).

    通讯作者:

    魏亚(1976―), 女, 河南人, 副教授, 博士, 从事结构材料及道路工程研究(E-mail: yawei@tsinghua.edu.cn).

  • 中图分类号: TU528

STRESS-STRAIN DEVELOPMENT AND PREDICTION OF CRACKING POTENTIAL BASED ON HUMIDITY DROP RATE OF HARDENING CONCRETE

  • 摘要: 建立了一种对水泥混凝土开裂风险进行评估的新方法。模型基于硬化过程中混凝土的应变-约束应力发展, 研究了开裂时间与收缩变形率和混凝土内部湿度降低率的关系。研究结果表明:混凝土开裂风险与收缩变形速率有关, 开裂时间与开裂时的临界收缩率存在唯一对应关系。该研究根据混凝土湿度与变形的关系, 提出了一个基于混凝土内部湿度降低速率的混凝土早期开裂预估方法。该方法避免了工程实际中为确定混凝土开裂风险而需要进行的变形测量及复杂的需要考虑徐变、应力松弛、强度和模量的发展等因素但又未必准确的应力计算过程, 简化了混凝土硬化过程中的开裂风险预测。
    Abstract: In this study, the early-age tensile stress development and cracking potential were investigated on cement paste and concrete. It was found that the cracking potential is closely related to the shrinkage rate rather than the shrinkage magnitude. A unique relationship was found exist between the shrinkage rate and cracking time for cement paste. The cracking time was then expressed as a function of a relative humidity (RH) drop rate and the aggregate content of mixtures. This study proposes a new methodology for evaluating cracking potential and has implications for mitigating early-age cracking in concrete members.
  • [1] Springenschmid R. Prevention of thermal cracking in concrete at early ages[M]. London: E& FN Spon, 1998: 60―62.
    [2] 王甲春, 阎培渝. 早龄期混凝土结构开裂风险分析[J]. 应用基础与工程科学学报, 2006, 14(2): 262―267.
    Wang Jiachun, Yan Peiyu. Analyzing of cracking risk of early-age concrete structure[J]. Journal of Basic Science and Engineering, 2006, 14(2): 262―267. (in Chinese)
    [3] 高原, 张君, 侯东伟. 早龄期混凝土湿度应力计算与开裂风险评估[J]. 工程力学, 2012, 29(2): 121―128.
    Gao Yuan, Zhang Jun, Hou Dongwei. Calculation of moisture induced stresses and evaluation of cracking risk in early-age concrete[J]. Engineering Mechanics, 2012, 29(2): 121―128. (in Chinese)
    [4] ASTM C1581. Standard test method for determining age at cracking and induced tensile stress characteristics of mortar and concrete under restrained shrinkage[S]. ASTM International. West Conshohocken, PA, 2009, 7.
    [5] Weiss W J, Shah S P. Recent trends to reduce shrinkage cracking in concrete pavements[C]//Proceedings of the Aircraft/Pavement Technology: In the Midst of Change. Seattle, WA, 1997: 217―228.
    [6] Bentur A. Early age shrinkage induced stresses and cracking in cementitious systems[C]// Proceedings of the RILEM Technical Committee 191-EAS, RILEM Publications, 2003: 337.
    [7] Kovler K, Sikuler J, Bentur A. Restrained shrinkage tests of fiber reinforced concrete ring specimens: Effect of core thermal expansion[J]. Materials and Structures, 1993, 26: 231―237.
    [8] Altoubat S A, Lange D A. Grip-specimen interaction in uniaxial restrained test, concrete: Material science to application—A tribute to surendra P. Shah[C]// Balaguru P, Naaman A, Weiss W, eds. Proceedings of the SP-206. American Concrete Institute, Farmington Hills, MI, 2002: 189―204.
    [9] Springenschmid R, Breitenbucher R, Mangold M. Development of the cracking frame and the temperature-stress testing machine[C]// Thermal Cracking in Concrete at Early Ages, Springenschmid, Ed. Proceedings of the RILEM Symposium, E&FN SPON, 1994: 137―144.
    [10] Bentur A, Kovler K. Evaluation of early age cracking characteristics in cementitious systems[J]. Materials and Structures, 2003, 36: 183―190.
    [11] Schindler A K. Effect of temperature on hydration of cementitious materials[J]. ACI Materials Journal, 2004, 101(1): 72―81.
    [12] Wei Y, Hansen W, Biernacki J J, Schlangen E. Unified shrinkage model for concrete from autogenous shrinkage test on paste with and without GGBFS[J]. ACI Materials Journal, 2011, 108(1): 13―20.
    [13] Grasley Z C. Measuring and modeling the time- dependent response of cementitious materials to internal stresses[D]. University of Illinois at Urbana-Champaign, 2006.
    [14] Jensen O M. Thermodynamic limitation of self- desiccation[J]. Cement and Concrete Research, 1995, 25(1): 157―164.
    [15] Bažant Z P, Najjar L J. Nonlinear water diffusion in nonsaturated concrete[J]. Materials and Structures, 1972, 25(5): 1―18.
    [16] Kreijer P C. The skin of concrete ― Composition and properties[J]. Materials and Structures, 1984, 17(100): 275―283.
计量
  • 文章访问数:  329
  • HTML全文浏览量:  17
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-14
  • 刊出日期:  2014-03-24

目录

    /

    返回文章
    返回