桥梁系统地震多维易损性分析

王其昂, 吴子燕, 贾兆平

王其昂, 吴子燕, 贾兆平. 桥梁系统地震多维易损性分析[J]. 工程力学, 2013, 30(10): 192-198. DOI: 10.6052/j.issn.1000-4750.2012.06.0464
引用本文: 王其昂, 吴子燕, 贾兆平. 桥梁系统地震多维易损性分析[J]. 工程力学, 2013, 30(10): 192-198. DOI: 10.6052/j.issn.1000-4750.2012.06.0464
WANG Qi-ang, WU Zi-yan, JIA Zhao-ping. MULTI-DIMENSIONAL FRAGILITY ANALYSIS OF BRIDGE SYSTEM UNDER EARTHQUAKE[J]. Engineering Mechanics, 2013, 30(10): 192-198. DOI: 10.6052/j.issn.1000-4750.2012.06.0464
Citation: WANG Qi-ang, WU Zi-yan, JIA Zhao-ping. MULTI-DIMENSIONAL FRAGILITY ANALYSIS OF BRIDGE SYSTEM UNDER EARTHQUAKE[J]. Engineering Mechanics, 2013, 30(10): 192-198. DOI: 10.6052/j.issn.1000-4750.2012.06.0464

桥梁系统地震多维易损性分析

基金项目: 国家自然科学基金项目(50878184,50875212,51278420)
详细信息
    作者简介:

    吴子燕(1962―),女,浙江宁波人,教授,博士,博导,从事结构可靠性设计与结构健康监测研究(E-mail: zywu@nwpu.edu.cn); 贾兆平(1989―),男,江苏南京人,硕士生,从事基于性能的结构设计与可靠性评估研究(E-mail: zpjia1989@gmail.com).

    通讯作者:

    王其昂(1986―),男,安徽宿州人,博士生,从事结构可靠性的理论与应用研究(E-mail:qawang2011@gmail.com).

  • 中图分类号: TU318

MULTI-DIMENSIONAL FRAGILITY ANALYSIS OF BRIDGE SYSTEM UNDER EARTHQUAKE

  • 摘要: 综合考虑地震地面运动以及性能极限状态的不确定性,提出了基于多地震需求参数分析的桥梁系统易损性评估方法,将易损性概念从一维扩展到多维。该方法首次提出服从多元对数正态分布的概率地震需求模型探讨桥梁体系各构件响应相关性,同时考虑各构件性能极限状态的相关性建立多维性能极限状态方程,确定结构失效域,通过MonteCarlo模拟计算系统多维地震易损性。以某一钢筋混凝土多跨连续梁高速公路桥为算例,通过非线性动力分析法获得最大响应样本,利用最大似然估计求得概率地震需求模型未知参数,计算体系多维易损性,并与构件易损性相比较。结果表明:桥梁体系多维易损性较构件易损性偏大,可避免用单一构件易损性代替系统易损性产生的非保守估计,预测结果更利于工程安全,为桥梁修复加固和交通系统可靠性分析提供理论依据。
    Abstract: A multi-dimensional fragility evaluation methodology for bridge is proposed based on multiple seismic demand parameter analysis. The method incorporates uncertainties in ground motion and performance limit state (PLS) and extends the definition of fragility to multi-dimension problems. A novel probabilistic seismic demand model (PSDM) accorded with multivariate lognormal distribution is addressed to discuss the dependencies of various component responses. Considering the correlation of component PLS, the generalized multi-dimensional PLS function is established. Finally Monte Carlo simulation is performed to calculate the fragility of system. A multi-span continuous reinforced concrete girder bridge is used as an example to illustrate the approach. The samples of maximum responses are obtained through nonlinear dynamic analysis to calculate the maximum likelihood estimators of unknown parameters in PSDM, then the system fragility curve is developed and compared with individual component fragility. The result shows that multi-dimensional fragility of bridge is higher than component fragility, thus eliminating non-conservative estimation resulting from substituting the component fragility for system. The proposed method will better ensure the safety of structures, providing theoretical evidence for bridge retrofit and reliability analysis of transportation network.
  • [1] Hwang H, 刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报, 2004, 37(6): 47―51.
    Hwang H, Liu Jingbo. Seismic fragility analysis of reinforced concrete bridges [J]. China Civil Engineering Journal, 2004, 37(6): 47―51. (in Chinese)
    [2] Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves [J]. Journal of Engineering Mechanics, ASCE, 2000, 126(12): 1224―1231.
    [3] Basoz N, Kiremidjian A S. Risk assessment of bridges and highway systems from the Northridge earthquake [C]. Sacramento, California: Proceedings of the National Seismic Conference on Bridges and Highways, 1997.
    [4] Shinozuka M, Feng M Q, Kim H, et al. Nonlinear static procedure for fragility curve development [J]. Journal of Engineering Mechanics, ASCE, 2000, 126(12): 1287―1295.
    [5] Karim K R, Yamazaki F. Effects of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation [J]. Earthquake Engineering Structural Dynamics, 2001, 30(12): 1839―1856.
    [6] 吴子燕, 王其昂, 韩晖, 等. 基于响应面法的桥梁地震易损性分析研究 [J]. 西北工业大学学报, 2011, 29(1): 103―107.
    Wu Ziyan, Wang Qi#x02019;ang, Han Hui, et al. Applying RSM (response surface methodology) to making seismic analysis of bridge more effective, General and Practical [J]. Journal of Northwestern Polytechnical University, 2011, 29(1): 103―107. (in Chinese)
    [7] Tanaka S, Kameda H, Nojima N, et al. Evaluation of seismic fragility for highway transportation systems [C]. Upper Hutt, New Zealand: Proceedings of the 12th World Conference on Earthquake Engineering, 2000.
    [8] Lu Y, Gu X, Guan J. Probabilistic drift limits and performance evaluation of reinforced concrete columns [J]. Journal of Structural Engineering, 2005, 131(6): 966―978.
    [9] 丁阳, 伍敏, 徐龙河, 等. 钢筋混凝土柱基于易损性曲线的地震损伤评估 [J]. 工程力学, 2012, 29(1): 81―86.
    Ding Yang, Wu Min, Xu Longhe, et al. Vulnerability curves-based seismic damage assessment of RC columns [J]. Engineering Mechanics, 2012, 29(1): 81―86. (in Chinese)
    [10] Choi E, Desroches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones [J]. Engineering Structures, 2004, 26(2): 187―199.
    [11] Pan Y, Agrawal A K, Ghosn M. Seismic fragility of continuous steel highway bridges in New York State [J]. Journal of Bridge Engineering, 2007, 12(6): 689―699.
    [12] Cimellaro G P, Reinhorn A M, Bruneau M, et al. Multi-dimensional fragility of structure formulation and evaluation [R]. Report No.MCEER-06-0002, New York: Multidisciplinary Center for Earthquake Engineering Research, 2006.
    [13] Casciati F, Cimellaro G, Domaneschi M. Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices [J]. Computers Structures, 2008, 86(17/18): 1769―1781.
    [14] Wang Q, Wu Z, Liu S. Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state [J]. Earthquake Engineering and Engineering Vibration, 2012, 11(2): 185―193.
    [15] Mackie K, Stojadinovic B. Probabilistic seismic demand model for California highway bridges [J]. Journal of Bridge Engineering, 2001, 6(6): 468―481.
    [16] Cimellaro G P, Reinhorn A M. Multidimensional performance limit state for hazard fragility functions [J]. Journal of Engineering Mechanics, 2010, 137(1): 47―60.
    [17] Thomopoulos N T, Longinow A. Bivariate lognormal probability distribution [J]. Journal of Structural Engineering, 1984, 110(12): 3045―3049.
    [18] Shinozuka M, Banerjee S. Damage Modeling of Reinforced Concrete Bridges [Z]. Las Vegas, NV: University of California, Irvine , 2005.
    [19] Priestley M J N, Seible F, Chai Y H. Design guidelines for assessment retrofit and repair of bridges for seismic performance [M]. San Diego: Department of Applied Mechanics Engineering Sciences, University of California, 1992: 4―34.
    [20] Dutta A, Mander J B. Rapid and detailed seismic fragility analysis of highway bridges [R]. New York, USA: Multidisciplinary Center for Earthquake Engineering Research, 2001.
    [21] Nielson B, DesRoches R. Analytical seismic fragility curves for typical bridges in the central and southeastern United States [J]. Earthquake Spectra, 2007, 23(3): 615―633.
    [22] Fam A, Mandal S, Rizkalla S. Rectangular filament-wound glass fiber-reinforced polymer tubes filled with concrete under flexural and axial loading: Experimental investigation [J]. Journal of Composites for Construction, ASCE, 2005, 1(25): 25―33.
    [23] Zhu Z, Ahmad I, Mirmiran A. Seismic performance of concrete-filled FRP tube columns for bridge substructure [J]. Journal of Bridge Engineering, ASCE, 2006, 11(3): 359―370.
    [24] Fam A, Cole B, Mandal S. Composite tubes as an alternative to steel spirals for concrete members in bending and shear [J]. Construction and Building Materials, Elsevier, 2007, 21(2): 347―355.
    [25] Ahmad I, Zhu Z, Mirmiran A. Behavior of short and deep beams made of concrete-filled fiber-reinforced polymer tubes [J]. Journal of Composites for Construction, ASCE, 2008, 12(1): 102―110.
    [26] 秦国鹏. GFRP管钢筋混凝土构件力学性能研究[D]. 沈阳: 东北大学, 2009.
    [27] 王连广, 秦国鹏, 周乐. GFRP管钢骨高强混凝土组合柱轴心受压试验研究[J]. 工程力学, 2009, 26(9): 170―175.
    Wang Lianguang, Qin Guopeng, Zhou Le. Experimental research of GFRP tube columns filled with steel-reinforced high-strength concrete subjected to axial loading [J]. Engineering Mechanics, 2009, 26(9): 170―175. (in Chinese)
    [28] 陈百玲, 王连广. GFRP管钢筋混凝土组合构件抗弯性能实验研究[J]. 东北大学学报, 2010, 31(10): 1495―1498.
    Chen Bailing, Wang Lianguang. Experimental research on anti-bending performance of composite RC-filled GFRP tube members [J]. Journal of Northeastern University, 2010, 31(10): 1495―1498. (in Chinese)
    [29] 王连广, 周乐. GFRP管钢骨高强混凝土偏压柱试验研究[J]. 工程力学, 2011, 28(1): 145―149.
    Wang Lianguang, Zhou Le. Experimental research on GFRP columns filled with steel-reinforced high-strength concrete subjected to eccentric compression load [J]. Engineering Mechanics, 2011, 28(1): 145―149. (in Chinese)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  24
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-28
  • 修回日期:  2012-08-18
  • 刊出日期:  2013-10-24

目录

    /

    返回文章
    返回